Search results
Results From The WOW.Com Content Network
Schwann cells or neurolemmocytes (named after German physiologist Theodor Schwann) are the principal glia of the peripheral nervous system (PNS). Glial cells function to support neurons and in the PNS, also include satellite cells, olfactory ensheathing cells, enteric glia and glia that reside at sensory nerve endings, such as the Pacinian corpuscle.
Neurilemma (also known as neurolemma, sheath of Schwann, or Schwann's sheath) [1] is the outermost nucleated cytoplasmic layer of Schwann cells (also called neurilemmocytes) that surrounds the axon of the neuron. It forms the outermost layer of the nerve fiber in the peripheral nervous system. [2]
Other cellular extensions that protrude from the cell membrane are known as membrane protrusions or cell protrusions, also cell appendages, such as flagella, and microvilli. [ 8 ] [ 9 ] Microtentacles are cell protrusions attached to free-floating cells, associated with the spread of some cancer cells .
Like all animal cells, the cell body of every neuron is enclosed by a plasma membrane, a bilayer of lipid molecules with many types of protein structures embedded in it. [12] A lipid bilayer is a powerful electrical insulator , but in neurons, many of the protein structures embedded in the membrane are electrically active.
Despite their flattened shape, satellite glial cells contain all common organelles necessary to make cellular products and to maintain the homeostatic environment of the cell. The plasma membrane of SGCs is thin and not very dense, [10] and it is associated with adhesion molecules, [11] receptors for neurotransmitters and other molecules, [10 ...
The two main types of cells in the brain are neurons, also known as nerve cells, and glial cells, also known as neuroglia. [1] There are many types of neuron, and several types of glial cell. Neurons are the excitable cells of the brain that function by communicating with other neurons and interneurons (via synapses ), in neural circuits and ...
Illustration of a eukaryotic cell membrane Comparison of a eukaryotic vs. a prokaryotic cell membrane. The cell membrane (also known as the plasma membrane or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of a cell from the outside environment (the extracellular space).
In neuroscience, the axolemma (from Greek lemma 'membrane, envelope', and 'axo-' from axon [1]) is the cell membrane of an axon, [1] the branch of a neuron through which signals (action potentials) are transmitted. The axolemma is a three-layered, bilipid membrane. Under standard electron microscope preparations, the structure is approximately ...