Ad
related to: unit circle with tangent solved problems worksheet 2
Search results
Results From The WOW.Com Content Network
A general Apollonius problem can be transformed into the simpler problem of circle tangent to one circle and two parallel lines (itself a special case of the LLC special case). To accomplish this, it suffices to scale two of the three given circles until they just touch, i.e., are tangent.
In general, the same inversion transforms the given circle C 1 and C 2 into two new circles, c 1 and c 2. Thus, the problem becomes that of finding a solution line tangent to the two inverted circles, which was solved above. There are four such lines, and re-inversion transforms them into the four solution circles of the original Apollonius ...
The same inversion transforms the third circle into another circle. The solution of the inverted problem must either be (1) a straight line parallel to the two given parallel lines and tangent to the transformed third given circle; or (2) a circle of constant radius that is tangent to the two given parallel lines and the transformed given circle.
Trigonometric functions and their reciprocals on the unit circle. All of the right-angled triangles are similar, i.e. the ratios between their corresponding sides are the same. For sin, cos and tan the unit-length radius forms the hypotenuse of the triangle that defines them.
Malfatti's problem is to carve three cylinders from a triangular block of marble, using as much of the marble as possible. In 1803, Gian Francesco Malfatti conjectured that the solution would be obtained by inscribing three mutually tangent circles into the triangle (a problem that had previously been considered by Japanese mathematician Ajima Naonobu); these circles are now known as the ...
Kissing circles. Given three mutually tangent circles (black), there are, in general, two possible answers (red) as to what radius a fourth tangent circle can have. In geometry, Descartes' theorem states that for every four kissing, or mutually tangent, circles, the radii of the circles satisfy a certain quadratic equation. By solving this ...
Angular unit. Degree (angle) Gon (angle) (aka Grad, Gradian) Radian; Turn (angle) Brocard points; Chord (geometry) Circle (also see List of circle topics) Unit circle; Hypotenuse; Opposites post; π (pi) Ptolemy's theorem; Pythagorean theorem; Regiomontanus' angle maximization problem; Thales' theorem; Trigonometric function; Trigonometry of a ...
Since C = 2πr, the circumference of a unit circle is 2π. In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. [1] Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Euclidean plane.