Search results
Results From The WOW.Com Content Network
Zero to the power of zero, denoted as 0 0, is a mathematical expression that can take different values depending on the context. In certain areas of mathematics, such as combinatorics and algebra, 0 0 is conventionally defined as 1 because this assignment simplifies many formulas and ensures consistency in operations involving exponents.
Graphs of y = b x for various bases b: base 10, base e, base 2, base 1 / 2 . Each curve passes through the point (0, 1) because any nonzero number raised to the power of 0 is 1. At x = 1, the value of y equals the base because any number raised to the power of 1 is the number itself.
The first 3 powers of 2 with all but last digit odd is 2 4 = 16, 2 5 = 32 and 2 9 = 512. The next such power of 2 of form 2 n should have n of at least 6 digits. The only powers of 2 with all digits distinct are 2 0 = 1 to 2 15 = 32 768, 2 20 = 1 048 576 and 2 29 = 536 870 912.
Any real number can be written in the form m × 10 ^ n in many ways: for example, 350 can be written as 3.5 × 10 2 or 35 × 10 1 or 350 × 10 0. In normalized scientific notation (called "standard form" in the United Kingdom), the exponent n is chosen so that the absolute value of m remains at least one but less than ten ( 1 ≤ | m | < 10 ).
To put in perspective the size of a googol, the mass of an electron, just under 10-30 kg, can be compared to the mass of the visible universe, estimated at between 10 50 and 10 60 kg. [5] It is a ratio in the order of about 10 80 to 10 90, or at most one ten-billionth of a googol (0.00000001% of a googol).
The coincidence = =, correct to 2.4%, relates to the rational approximation , or / to within 0.3%. This relationship is used in engineering, for example to approximate a factor of two in power as 3 dB (actual is 3.0103 dB – see Half-power point ), or to relate a kibibyte to a kilobyte ; see binary prefix .
In arithmetic and algebra, the fifth power or sursolid [1] of a number n is the result of multiplying five instances of n together: n 5 = n × n × n × n × n. Fifth powers are also formed by multiplying a number by its fourth power, or the square of a number by its cube. The sequence of fifth powers of integers is:
Where a power of ten has different names in the two conventions, the long scale name is shown in parentheses. The positive 10 power related to a short scale name can be determined based on its Latin name-prefix using the following formula: 10 [(prefix-number + 1) × 3] Examples: billion = 10 [(2 + 1) × 3] = 10 9; octillion = 10 [(8 + 1) × 3 ...