Search results
Results From The WOW.Com Content Network
In his book Matter and Motion, Maxwell writes: The study of the hodograph, as a method of investigating the motion of a body, was introduced by Sir W. R. Hamilton. The hodograph may be defined as the path traced out by the extremity of a vector which continually represents, in direction and magnitude, the velocity of a moving body.
When a body is in uniform circular motion, the force on it changes the direction of its motion but not its speed. For a body moving in a circle of radius r {\displaystyle r} at a constant speed v {\displaystyle v} , its acceleration has a magnitude a = v 2 r {\displaystyle a={\frac {v^{2}}{r}}} and is directed toward the center of the circle.
The first of Newton's laws of motion states that an object's inertia keeps it in motion; since the object in the air has a velocity, it will tend to keep moving in that direction. A varying angular speed for an object moving in a circular path can also be achieved if the rotating body does not have a homogeneous mass distribution.
Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)
The direction of the cross product may be found by application of the right-hand rule as follows: The index finger points in the direction of the velocity vector v. The middle finger points in the direction of the magnetic field vector B. The thumb points in the direction of the cross product F.
Notice that velocity always points in the direction of motion, in other words for a curved path it is the tangent vector. Loosely speaking, first order derivatives are related to tangents of curves. Still for curved paths, the acceleration is directed towards the center of curvature of the path. Again, loosely speaking, second order derivatives ...
Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.
is the velocity of the Man relative to the Train, v T ∣ E {\displaystyle \mathbf {v} _{T\mid E}} is the velocity of the T rain relative to E arth. Fully legitimate expressions for "the velocity of A relative to B" include "the velocity of A with respect to B" and "the velocity of A in the coordinate system where B is always at rest".