When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cumulative distribution function - Wikipedia

    en.wikipedia.org/wiki/Cumulative_distribution...

    Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .

  3. Standard normal table - Wikipedia

    en.wikipedia.org/wiki/Standard_normal_table

    Example: To find 0.69, one would look down the rows to find 0.6 and then across the columns to 0.09 which would yield a probability of 0.25490 for a cumulative from mean table or 0.75490 from a cumulative table. To find a negative value such as -0.83, one could use a cumulative table for negative z-values [3] which yield a probability of 0.20327.

  4. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    The probability density, cumulative distribution, and inverse cumulative distribution of any function of one or more independent or correlated normal variables can be computed with the numerical method of ray-tracing [41] (Matlab code). In the following sections we look at some special cases.

  5. Cumulant - Wikipedia

    en.wikipedia.org/wiki/Cumulant

    The cumulative property follows quickly by considering the cumulant-generating function: + + = ⁡ ⁡ [(+ +)] = ⁡ (⁡ [] ⁡ []) = ⁡ ⁡ [] + + ⁡ ⁡ [] = + + (), so that each cumulant of a sum of independent random variables is the sum of the corresponding cumulants of the addends. That is, when the addends are statistically ...

  6. Notation in probability and statistics - Wikipedia

    en.wikipedia.org/wiki/Notation_in_probability...

    The α-level upper critical value of a probability distribution is the value exceeded with probability , that is, the value such that () =, where is the cumulative distribution function. There are standard notations for the upper critical values of some commonly used distributions in statistics:

  7. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    Diagram showing the cumulative distribution function for the normal distribution with mean (μ) 0 and variance (σ 2) 1. These numerical values "68%, 95%, 99.7%" come from the cumulative distribution function of the normal distribution. The prediction interval for any standard score z corresponds numerically to (1 − (1 − Φ μ,σ 2 (z)) · 2).

  8. Gumbel distribution - Wikipedia

    en.wikipedia.org/wiki/Gumbel_distribution

    Gumbel has also shown that the estimator r ⁄ (n+1) for the probability of an event — where r is the rank number of the observed value in the data series and n is the total number of observations — is an unbiased estimator of the cumulative probability around the mode of the distribution.

  9. Logistic distribution - Wikipedia

    en.wikipedia.org/wiki/Logistic_distribution

    In probability theory and statistics, the logistic distribution is a continuous probability distribution. Its cumulative distribution function is the logistic function, which appears in logistic regression and feedforward neural networks. It resembles the normal distribution in shape but has heavier tails (higher kurtosis).