Search results
Results From The WOW.Com Content Network
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
The uncertainty has two components, namely, bias (related to accuracy) and the unavoidable random variation that occurs when making repeated measurements (related to precision). The measured quantities may have biases , and they certainly have random variation , so what needs to be addressed is how these are "propagated" into the uncertainty of ...
Some military and expensive survey-grade civilian receivers calculate atmospheric dispersion from the different delays in the L1 and L2 frequencies, and apply a more precise correction. This can be done in civilian receivers without decrypting the P(Y) signal carried on L2, by tracking the carrier wave instead of the modulated code.
Uncertainty may be implied by the last significant figure if it is not explicitly expressed. [1] The implied uncertainty is ± the half of the minimum scale at the last significant figure position. For example, if the mass of an object is reported as 3.78 kg without mentioning uncertainty, then ± 0.005 kg measurement uncertainty may be implied.
This may be because a measurement is not accurate, because the model neglects certain effects, or because particular data have been deliberately hidden. An example of a source of this uncertainty would be the drag in an experiment designed to measure the acceleration of gravity near the earth's surface. The commonly used gravitational ...
The second term is known as refinement, and it is an aggregation of resolution and uncertainty, and is related to the area under the ROC Curve. The Brier Score, and the CAL + REF decomposition, can be represented graphically through the so-called Brier Curves, [3] where the expected loss is shown for each operating condition. This makes the ...
The RMSD serves to aggregate the magnitudes of the errors in predictions for various data points into a single measure of predictive power. RMSD is a measure of accuracy, to compare forecasting errors of different models for a particular dataset and not between datasets, as it is scale-dependent. [1]
These values are used to calculate an E value for the estimate and a standard deviation (SD) as L-estimators, where: E = (a + 4m + b) / 6 SD = (b − a) / 6. E is a weighted average which takes into account both the most optimistic and most pessimistic estimates provided. SD measures the variability or uncertainty in the estimate.