Search results
Results From The WOW.Com Content Network
In particular, for three points in the plane (n = 2), the above matrix is square and the points are collinear if and only if its determinant is zero; since that 3 × 3 determinant is plus or minus twice the area of a triangle with those three points as vertices, this is equivalent to the statement that the three points are collinear if and only ...
The equations originate from the central projection of a point of the object through the optical centre of the camera to the image on the sensor plane. [1] The three points P, Q and R are projected on the plane S through the projection centre C x- and z-axis of the projection of P through the projection centre C
They proved that the maximum number of points in the grid with no three points collinear is (). Similarly to Erdős's 2D construction, this can be accomplished by using points ( x , y , x 2 + y 2 {\displaystyle (x,y,x^{2}+y^{2}} mod p ) {\displaystyle p)} , where p {\displaystyle p} is a prime congruent to 3 mod 4 . [ 20 ]
collinearity between points: three or more points which lie on the same line (called collinear points) continue to be collinear after the transformation. parallelism: two or more lines which are parallel, continue to be parallel after the transformation. convexity of sets: a convex set continues to be convex after the transformation.
If the three points are collinear, R can be informally considered to be +∞, and it makes rigorous sense to define c(x, y, z) = 0. If any of the points x, y and z are coincident, again define c(x, y, z) = 0. Using the well-known formula relating the side lengths of a triangle to its area, it follows that
A complete quadrangle consists of four points, no three of which are collinear. In the Fano plane, the three points not on a complete quadrangle are the diagonal points of that quadrangle and are collinear. This contradicts the Fano axiom, often used as an axiom for the Euclidean plane, which states that the three diagonal points of a complete ...
The Apollonian circles are two 1-parameter families determined by 2 points. As is well known, three non-collinear points determine a circle in Euclidean geometry and two distinct points determine a pencil of circles such as the Apollonian circles. These results seem to run counter the general result since circles are special cases of conics.
By extension, k points in a plane are collinear if and only if any (k–1) pairs of points have the same pairwise slopes. In Euclidean geometry, the Euclidean distance d(a,b) between two points a and b may be used to express the collinearity between three points by: [3] [4]