Search results
Results From The WOW.Com Content Network
MATLAB (an abbreviation of "MATrix LABoratory" [18]) is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks.MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages.
A function may also be called a map or a mapping, but some authors make a distinction between the term "map" and "function". For example, the term "map" is often reserved for a "function" with some sort of special structure (e.g. maps of manifolds ).
A map is a function, as in the association of any of the four colored shapes in X to its color in Y. In mathematics, a map or mapping is a function in its general sense. [1] These terms may have originated as from the process of making a geographical map: mapping the Earth surface to a sheet of paper. [2]
A function is injective (one-to-one) if each possible element of the codomain is mapped to by at most one argument. Equivalently, a function is injective if it maps distinct arguments to distinct images. An injective function is an injection. [1] The formal definition is the following.
The map function originated in functional programming languages. The language Lisp introduced a map function called maplist [3] in 1959, with slightly different versions already appearing in 1958. [4] This is the original definition for maplist, mapping a function over successive rest lists:
As mentioned above, the logistic map itself is an ordinary quadratic function. An important question in terms of dynamical systems is how the behavior of the trajectory changes when the parameter r changes. Depending on the value of r, the behavior of the trajectory of the logistic map can be simple or complex.
Let X be an affine space over a field k, and V be its associated vector space. An affine transformation is a bijection f from X onto itself that is an affine map; this means that a linear map g from V to V is well defined by the equation () = (); here, as usual, the subtraction of two points denotes the free vector from the second point to the first one, and "well-defined" means that ...
It generalizes to n-ary functions, where the proper term is multilinear. For non-commutative rings R and S, a left R-module M and a right S-module N, a bilinear map is a map B : M × N → T with T an (R, S)-bimodule, and for which any n in N, m ↦ B(m, n) is an R-module homomorphism, and for any m in M, n ↦ B(m, n) is an S-module ...