When.com Web Search

  1. Ad

    related to: tension in a massless rope line with velocity of 30 g is 4 times the volume

Search results

  1. Results From The WOW.Com Content Network
  2. Tension (physics) - Wikipedia

    en.wikipedia.org/wiki/Tension_(physics)

    For example, consider a system consisting of an object that is being lowered vertically by a string with tension, T, at a constant velocity. The system has a constant velocity and is therefore in equilibrium because the tension in the string, which is pulling up on the object, is equal to the weight force , mg ("m" is mass, "g" is the ...

  3. Capstan equation - Wikipedia

    en.wikipedia.org/wiki/Capstan_equation

    where is the applied tension on the line, is the resulting force exerted at the other side of the capstan, is the coefficient of friction between the rope and capstan materials, and is the total angle swept by all turns of the rope, measured in radians (i.e., with one full turn the angle =).

  4. String vibration - Wikipedia

    en.wikipedia.org/wiki/String_vibration

    where is the tension (in Newtons), is the linear density (that is, the mass per unit length), and is the length of the vibrating part of the string. Therefore: the shorter the string, the higher the frequency of the fundamental; the higher the tension, the higher the frequency of the fundamental

  5. Spinning drop method - Wikipedia

    en.wikipedia.org/wiki/Spinning_Drop_Method

    An approximate theory was developed by Bernard Vonnegut [3] in 1942 to measure the surface tension of the fluids, which is based on the principle that the interfacial tension and centrifugal forces are balanced at mechanical equilibrium. This theory assumes that the droplet's length L is much greater than its radius R, so that it may be ...

  6. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    The Lagrangian is then the volume integral of the Lagrangian density over 3D space = where d 3 r is a 3D differential volume element. The Lagrangian is a function of time since the Lagrangian density has implicit space dependence via the fields, and may have explicit spatial dependence, but these are removed in the integral, leaving only time ...

  7. Atwood machine - Wikipedia

    en.wikipedia.org/wiki/Atwood_machine

    The ideal Atwood machine consists of two objects of mass m 1 and m 2, connected by an inextensible massless string over an ideal massless pulley. [1] Both masses experience uniform acceleration. When m 1 = m 2, the machine is in neutral equilibrium regardless of the position of the weights.

  8. Archimedes' principle - Wikipedia

    en.wikipedia.org/wiki/Archimedes'_principle

    The weight of the object in the fluid is reduced, because of the force acting on it, which is called upthrust. In simple terms, the principle states that the buoyant force (F b) on an object is equal to the weight of the fluid displaced by the object, or the density of the fluid multiplied by the submerged volume (V) times the gravity (g) [1] [3]

  9. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Newton's laws are often stated in terms of point or particle masses, that is, bodies whose volume is negligible. This is a reasonable approximation for real bodies when the motion of internal parts can be neglected, and when the separation between bodies is much larger than the size of each.