When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hysteresis - Wikipedia

    en.wikipedia.org/wiki/Hysteresis

    The curves form a hysteresis loop. Hysteresis is the dependence of the state of a system on its history. For example, a magnet may have more than one possible magnetic moment in a given magnetic field, depending on how the field changed in the past. Plots of a single component of the moment often form a loop or hysteresis curve, where there are ...

  3. Hysteresivity - Wikipedia

    en.wikipedia.org/wiki/Hysteresivity

    Hysteresivity derives from “hysteresis”, meaning “lag”. It is the tendency to react slowly to an outside force, or to not return completely to its original state. Whereas the area within a hysteresis loop represents energy dissipated to heat and is an extensive quantity with units of energy, the hysteresivity represents the fraction of the elastic energy that is lost to heat, and is an ...

  4. Alternative stable state - Wikipedia

    en.wikipedia.org/wiki/Alternative_stable_state

    Hysteresis is an important concept in alternative stable state theory. In this ecological context, hysteresis refers to the existence of different stable states under the same variables or parameters. Hysteresis can be explained by "path-dependency", in which the equilibrium point for the trajectory of "A → B" is different from for "B → A ...

  5. Remanence - Wikipedia

    en.wikipedia.org/wiki/Remanence

    The effect of a magnetic hysteresis loop is measured using instruments such as a vibrating sample magnetometer; and the zero-field intercept is a measure of the remanence. In physics this measure is converted to an average magnetization (the total magnetic moment divided by the volume of the sample) and denoted in equations as M r .

  6. Magnetostriction - Wikipedia

    en.wikipedia.org/wiki/Magnetostriction

    Magnetostrictive hysteresis loop of Mn-Zn ferrite for power applications measured by semiconductor strain gauges. Like flux density, the magnetostriction also exhibits hysteresis versus the strength of the magnetizing field. The shape of this hysteresis loop (called "dragonfly loop") can be reproduced using the Jiles-Atherton model. [4]

  7. Vibrating-sample magnetometer - Wikipedia

    en.wikipedia.org/wiki/Vibrating-sample_magnetometer

    The current is proportional to the magnetization of the sample - the greater the induced current, the greater the magnetization. As a result, typically a hysteresis curve will be recorded [5] and from there the magnetic properties of the sample can be deduced. The idea of vibrating sample came from D. O. Smith's [6] vibrating-coil magnetometer.

  8. Bouc–Wen model of hysteresis - Wikipedia

    en.wikipedia.org/wiki/Bouc–Wen_model_of_hysteresis

    In structural engineering, the Bouc–Wen model of hysteresis is a hysteretic model typically employed to describe non-linear hysteretic systems. It was introduced by Robert Bouc [ 1 ] [ 2 ] and extended by Yi-Kwei Wen, [ 3 ] who demonstrated its versatility by producing a variety of hysteretic patterns.

  9. Jiles–Atherton model - Wikipedia

    en.wikipedia.org/wiki/Jiles–Atherton_model

    In electromagnetism and materials science, the Jiles–Atherton model of magnetic hysteresis was introduced in 1984 by David Jiles and D. L. Atherton. [1] This is one of the most popular models of magnetic hysteresis. Its main advantage is the fact that this model enables connection with physical parameters of the magnetic material. [2]