Search results
Results From The WOW.Com Content Network
Circular buffering makes a good implementation strategy for a queue that has fixed maximum size. Should a maximum size be adopted for a queue, then a circular buffer is a completely ideal implementation; all queue operations are constant time. However, expanding a circular buffer requires shifting memory, which is comparatively costly.
Such data structures may have not specified a fixed capacity limit besides memory constraints. Queue overflow results from trying to add an element onto a full queue and queue underflow happens when trying to remove an element from an empty queue. A bounded queue is a queue limited to a fixed number of items. [1]
This also implies that C++ compilers can automatically select the most efficient representation for the target platform (i.e., 64-bit integers for a 64-bit platform), while the representation is fixed in Java, meaning the values can either be stored in the less-efficient size, or must pad the remaining bits and add code to emulate the reduced ...
Representation of a FIFO queue with enqueue and dequeue operations. Depending on the application, a FIFO could be implemented as a hardware shift register, or using different memory structures, typically a circular buffer or a kind of list. For information on the abstract data structure, see Queue (data structure).
Query by Slice, Parallel Execute, and Join: A Thread Pool Pattern in Java" by Binildas C. A. "Thread pools and work queues" by Brian Goetz "A Method of Worker Thread Pooling" by Pradeep Kumar Sahu "Work Queue" by Uri Twig: C++ code demonstration of pooled threads executing a work queue. "Windows Thread Pooling and Execution Chaining"
Fixed-size block memory pools do not need to store allocation metadata for each allocation, describing characteristics like the size of the allocated block. Particularly for small allocations, this provides substantial space savings. Allows deterministic behavior on real-time systems by avoiding out of memory errors. Drawbacks
The java.util.Queue interface defines the queue data structure, which stores elements in the order in which they are inserted. New additions go to the end of the line, and elements are removed from the front. It creates a first-in first-out system. This interface is implemented by java.util.LinkedList, java.util.ArrayDeque, and java.util ...
A typical stack is an area of computer memory with a fixed origin and a variable size. Initially the size of the stack is zero. A stack pointer (usually in the form of a processor register) points to the most recently referenced location on the stack; when the stack has a size of zero, the stack pointer points to the origin of the stack.