When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Differentiation of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Differentiation_of...

    For example, the derivative of the sine function is written sin ′ (a) = cos(a), meaning that the rate of change of sin(x) at a particular angle x = a is given by the cosine of that angle. All derivatives of circular trigonometric functions can be found from those of sin( x ) and cos( x ) by means of the quotient rule applied to functions such ...

  3. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    The proofs given in this article use these definitions, and thus apply to non-negative angles not greater than a right angle. For greater and negative angles , see Trigonometric functions . Other definitions, and therefore other proofs are based on the Taylor series of sine and cosine , or on the differential equation f ″ + f = 0 ...

  4. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    Trigonometric functions and their reciprocals on the unit circle. All of the right-angled triangles are similar, i.e. the ratios between their corresponding sides are the same.

  5. Sinc function - Wikipedia

    en.wikipedia.org/wiki/Sinc_function

    The sinc function as audio, at 2000 Hz (±1.5 seconds around zero) In mathematics, the historical unnormalized sinc function is defined for x ≠ 0 by ⁡ = ⁡.. Alternatively, the unnormalized sinc function is often called the sampling function, indicated as Sa(x).

  6. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    The function f (n) (a) denotes the n th derivative of f evaluated at the point a. The derivative of order zero of f is defined to be f itself and (x − a) 0 and 0! are both defined to be 1. This series can be written by using sigma notation, as in the right side formula. [1]

  7. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    The original proof is based on the Taylor series expansions of the exponential function e z (where z is a complex number) and of sin x and cos x for real numbers x . In fact, the same proof shows that Euler's formula is even valid for all complex numbers x.

  8. Quotient rule - Wikipedia

    en.wikipedia.org/wiki/Quotient_rule

    3.1 Proof from derivative definition and limit properties. 3.2 Proof using implicit differentiation. 3.3 Proof using the reciprocal rule or chain rule.

  9. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    A similar proof can be completed using power series as above to establish that the sine has as its derivative the cosine, and the cosine has as its derivative the negative sine. In fact, the definitions by ordinary differential equation and by power series lead to similar derivations of most identities.