When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Source–message–channel–receiver model of communication

    en.wikipedia.org/wiki/Source–message–channel...

    The SMCR model is usually described as a linear transmission model of communication. [4] [17] Its main focus is to identify the basic parts of communication and to show how their characteristics shape the communicative process. In this regard, Berlo understands his model as "a model of the ingredients of communication". [24]

  3. Models of communication - Wikipedia

    en.wikipedia.org/wiki/Models_of_communication

    Shannon–Weaver model of communication [86] The Shannon–Weaver model is another early and influential model of communication. [10] [32] [87] It is a linear transmission model that was published in 1948 and describes communication as the interaction of five basic components: a source, a transmitter, a channel, a receiver, and a destination.

  4. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).

  5. Five-point stencil - Wikipedia

    en.wikipedia.org/wiki/Five-point_stencil

    An illustration of the five-point stencil in one and two dimensions (top, and bottom, respectively). In numerical analysis, given a square grid in one or two dimensions, the five-point stencil of a point in the grid is a stencil made up of the point itself together with its four "neighbors".

  6. Computational electromagnetics - Wikipedia

    en.wikipedia.org/wiki/Computational_electromagnetics

    Finite-difference frequency-domain (FDFD) provides a rigorous solution to Maxwell’s equations in the frequency-domain using the finite-difference method. [13] FDFD is arguably the simplest numerical method that still provides a rigorous solution. It is incredibly versatile and able to solve virtually any problem in electromagnetics.

  7. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + ⁠ h / 2 ⁠) and f ′(x − ⁠ h / 2 ⁠) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f:

  8. Communicating finite-state machine - Wikipedia

    en.wikipedia.org/wiki/Communicating_finite-state...

    In computer science, a communicating finite-state machine is a finite state machine labeled with "receive" and "send" operations over some alphabet of channels. They were introduced by Brand and Zafiropulo, [1] and can be used as a model of concurrent processes like Petri nets. Communicating finite state machines are used frequently for ...

  9. Finite-difference time-domain method - Wikipedia

    en.wikipedia.org/wiki/Finite-difference_time...

    Finite-difference time-domain (FDTD) or Yee's method (named after the Chinese American applied mathematician Kane S. Yee, born 1934) is a numerical analysis technique used for modeling computational electrodynamics (finding approximate solutions to the associated system of differential equations).