Search results
Results From The WOW.Com Content Network
Formally, let V be a vector space over a field K and W a vector space over a field L. Consider the projective spaces PG(V) and PG(W), consisting of the vector lines of V and W. Call D(V) and D(W) the set of subspaces of V and W respectively. A collineation from PG(V) to PG(W) is a map α : D(V) → D(W), such that: α is a bijection.
Let X be an affine space over a field k, and V be its associated vector space. An affine transformation is a bijection f from X onto itself that is an affine map; this means that a linear map g from V to V is well defined by the equation () = (); here, as usual, the subtraction of two points denotes the free vector from the second point to the first one, and "well-defined" means that ...
The linear maps (or linear functions) of vector spaces, viewed as geometric maps, map lines to lines; that is, they map collinear point sets to collinear point sets and so, are collineations. In projective geometry these linear mappings are called homographies and are just one type of collineation.
The most obvious use of these equations is for images recorded by a camera. In this case the equation describes transformations from object space (X, Y, Z) to image coordinates (x, y). It forms the basis for the equations used in bundle adjustment. They indicate that the image point (on the sensor plate of the camera), the observed point (on ...
Algebra: direct input of inequalities, implicit polynomials, linear and quadratic equations; calculations with numbers, points and vectors; Calculus: direct input of functions (including piecewise-defined); intersections and roots of functions; symbolic derivatives and integrals (built-in CAS); sliders as parameters; Parametric Graphs: Yes
For instance, the Sylvester–Gallai theorem, stating that any non-collinear set of points in the plane has an ordinary line containing exactly two points, transforms under projective duality to the statement that any projective arrangement of finitely many lines with more than one vertex has an ordinary point, a vertex where only two lines cross.
The two subtleties in the above analysis are that the resulting point is a quadratic equation (not a linear equation), and that the constraints are independent. The first is simple: if A , B , and C all vanish, then the equation D x + E y + F = 0 {\displaystyle Dx+Ey+F=0} defines a line, and any 3 points on this (indeed any number of points ...
Microsoft Math Solver (formerly Microsoft Mathematics and Microsoft Math) is an entry-level educational app that solves math and science problems. Developed and maintained by Microsoft, it is primarily targeted at students as a learning tool. Until 2015, it ran on Microsoft Windows.