Search results
Results From The WOW.Com Content Network
The top shows the directive pattern of a horn antenna, the bottom shows the omnidirectional pattern of a simple vertical dipole antenna. In the field of antenna design the term radiation pattern (or antenna pattern or far-field pattern) refers to the directional (angular) dependence of the strength of the radio waves from the antenna or other ...
The antenna's feed point is at the center of the disc. It is usually fed with 50-ohm coaxial cable, with the center conductor connected to the disc, and the outer conductor to the cone. The cone: The length of the cone should be a quarter wavelength of the antenna's lowest operating frequency. [2] The cone angle is generally from 25 to 40 degrees.
The antenna rod and its image together act like a dipole antenna of twice the length, so a monopole over an infinite, perfectly conducting plane has a radiation pattern identical to the top half of the pattern of a vertical dipole of twice the length. [1] [70] [71] For the quarter wave monopole, the antenna acts like a half wave dipole.
Vertical polarized VHF-UHF biconical antenna 170–1100 MHz with omnidirectional H-plane pattern. Omnidirectional radiation patterns are produced by the simplest practical antennas, monopole and dipole antennas, consisting of one or two straight rod conductors on a common axis.
Parabolic antennas are based on the geometrical property of the paraboloid that the paths FP 1 Q 1, FP 2 Q 2, FP 3 Q 3 are all the same length. Thus, a spherical wavefront emitted by a feed antenna at the dish's focus F will be reflected into an outgoing plane wave L travelling parallel to the dish's axis VF.
The gain and input impedance of the antenna is dependent on the length of the whip element, compared to a wavelength, but also on the size and shape of the ground plane used (if any). A quarter wave vertical antenna working against a perfectly conducting, infinite ground will have a gain of 5.19 dBi and a radiation resistance of about 36.8 ohms.
The vertical plane is used to plot an antenna's relative field strength perpendicular to the ground (which directly affects a station's coverage area) on a polar graph. Normally, the maximum of 1.000 or 0 dB is at the side (unless there is beam tilt ), which is labeled 0°, to 90° at the top and −90° at the bottom.
Note that for a given antenna feedpoint impedance, an antenna's gain or increases according to the square of , so that the effective length for an antenna relative to different wave directions follows the square root of the gain in those directions. But since changing the physical size of an antenna inevitably changes the impedance (often by a ...