Search results
Results From The WOW.Com Content Network
The color temperature scale describes only the color of light emitted by a light source, which may actually be at a different (and often much lower) temperature. [1] [2] Color temperature has applications in lighting, [3] photography, [4] videography, [5] publishing, [6] manufacturing, [7] astrophysics, [8] and other fields.
Priest proposed to use "the scale of temperature as a scale for arranging the chromaticities of the several illuminants in a serial order". Over the next few years, Judd published three more significant papers: The first verified the findings of Priest, [7] Davis, [8] and Judd, [9] with a paper on sensitivity to change in color temperature. [11]
The CIE 1931 xy chromaticity space, also showing the chromaticities of black-body light sources of various temperatures, and lines of constant correlated color temperature sRGB gamut plotted in xyY color space (chromaticity + luminosity) Chromaticity is an objective specification of the quality of a color regardless of its luminance.
A list of standardized illuminants, their CIE chromaticity coordinates (x,y) of a perfectly reflecting (or transmitting) diffuser, and their correlated color temperatures (CCTs) are given below. The CIE chromaticity coordinates are given for both the 2 degree field of view (1931) and the 10 degree field of view (1964). [1]
In astronomy, the color index is a simple numerical expression that determines the color of an object, which in the case of a star gives its temperature. The lower the color index, the more blue (or hotter) the object is. Conversely, the larger the color index, the more red (or cooler) the object is.
The colors are intense and seem to be caused by Cu(I)–Hg(II) charge-transfer complexes. [7] Silver mercury iodide (Ag 2 [HgI 4]) is yellow at low temperatures and orange above 47–51 °C, with intermediate yellow-orange states. The colors are intense and seem to be caused by Ag(I)–Hg(II) charge-transfer complexes. [7]
For example, natural daylight has a color temperature of 6500 K and an illuminance of about 10 4 to 10 5 lux. This color temperature–illuminance pair results in natural color rendition, but if viewed at a low illuminance, would appear bluish. At typical indoor office illuminance levels of about 400 lux, pleasing color temperatures are lower ...
Color temperatures and example sources Temperature Source 1700 K Match flame, low pressure sodium lamps (LPS/SOX) 1850 K Candle flame, sunset/sunrise: 2400 K Standard incandescent lamps: 2550 K Soft white incandescent lamps 2700 K "Soft white" compact fluorescent and LED lamps 3000 K Warm white compact fluorescent and LED lamps 3200 K