Search results
Results From The WOW.Com Content Network
For a parametric equation of a parabola in general position see § As the affine image of the unit parabola. The implicit equation of a parabola is defined by an irreducible polynomial of degree two: + + + + + =, such that =, or, equivalently, such that + + is the square of a linear polynomial.
In this position, the hyperbolic paraboloid opens downward along the x-axis and upward along the y-axis (that is, the parabola in the plane x = 0 opens upward and the parabola in the plane y = 0 opens downward). Any paraboloid (elliptic or hyperbolic) is a translation surface, as it can be generated by a moving parabola directed by a second ...
The zero level set F(t 0,(x,y)) = 0 gives the equation of the tangent line to the parabola at the point (t 0,t 0 2). The equation t 2 – 2tx + y = 0 can always be solved for y as a function of x and so, consider + = Substituting = / gives the ODE
Parametric equations are commonly used in kinematics, where the trajectory of an object is represented by equations depending on time as the parameter. Because of this application, a single parameter is often labeled t ; however, parameters can represent other physical quantities (such as geometric variables) or can be selected arbitrarily for ...
A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated ...
where (h, k) is the center of the ellipse in Cartesian coordinates, in which an arbitrary point is given by (x, y).The semi-major axis is the mean value of the maximum and minimum distances and of the ellipse from a focus — that is, of the distances from a focus to the endpoints of the major axis
Solving the equation for the coordinates of , we find = ˙ (˙ + ... The osculating circle of the parabola at its vertex has radius 0.5 and fourth order contact.
The equation of a parabola is, up to similarity, translating so that the vertex is at the origin and rotating so that the axis is horizontal, x = y 2. In polar coordinates this becomes = . The inverse curve then has equation