When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Equilibrium point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Equilibrium_point...

    Stability generally increases to the left of the diagram. [1] Some sink, source or node are equilibrium points. In mathematics, specifically in differential equations, an equilibrium point is a constant solution to a differential equation.

  3. Stability theory - Wikipedia

    en.wikipedia.org/wiki/Stability_theory

    The simplest kind of an orbit is a fixed point, or an equilibrium. If a mechanical system is in a stable equilibrium state then a small push will result in a localized motion, for example, small oscillations as in the case of a pendulum. In a system with damping, a stable equilibrium state is moreover asymptotically stable. On the other hand ...

  4. Saddle-node bifurcation - Wikipedia

    en.wikipedia.org/wiki/Saddle-node_bifurcation

    At = (the bifurcation point) there is exactly one equilibrium point. At this point the fixed point is no longer hyperbolic. In this case the fixed point is called a saddle-node fixed point. If > there are no equilibrium points. [2] Saddle node bifurcation. In fact, this is a normal form of a saddle-node bifurcation.

  5. Lyapunov stability - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_stability

    The most important type is that concerning the stability of solutions near to a point of equilibrium. This may be discussed by the theory of Aleksandr Lyapunov . In simple terms, if the solutions that start out near an equilibrium point x e {\displaystyle x_{e}} stay near x e {\displaystyle x_{e}} forever, then x e {\displaystyle x_{e}} is ...

  6. Linear stability - Wikipedia

    en.wikipedia.org/wiki/Linear_stability

    In mathematics, in the theory of differential equations and dynamical systems, a particular stationary or quasistationary solution to a nonlinear system is called linearly unstable if the linearization of the equation at this solution has the form / =, where r is the perturbation to the steady state, A is a linear operator whose spectrum contains eigenvalues with positive real part.

  7. Multistability - Wikipedia

    en.wikipedia.org/wiki/Multistability

    In a dynamical system, multistability is the property of having multiple stable equilibrium points in the vector space spanned by the states in the system. By mathematical necessity, there must also be unstable equilibrium points between the stable points.

  8. Lorenz system - Wikipedia

    en.wikipedia.org/wiki/Lorenz_system

    These correspond to steady convection. This pair of equilibrium points is stable only if < + +, which can hold only for positive ρ if σ > β + 1. At the critical value, both equilibrium points lose stability through a subcritical Hopf bifurcation. [19]

  9. Autonomous system (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Autonomous_system...

    Stability generally increases to the left of the diagram. [1] Some sink, source or node are equilibrium points . 2-dimensional case refers to Phase plane . In mathematics , an autonomous system or autonomous differential equation is a system of ordinary differential equations which does not explicitly depend on the independent variable .