When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Kappa curve - Wikipedia

    en.wikipedia.org/wiki/Kappa_curve

    The kappa curve has two vertical asymptotes. In geometry, the kappa curve or Gutschoven's curve is a two-dimensional algebraic curve resembling the Greek letter ϰ (kappa).The kappa curve was first studied by Gérard van Gutschoven around 1662.

  3. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    The normal curvature, k n, is the curvature of the curve projected onto the plane containing the curve's tangent T and the surface normal u; the geodesic curvature, k g, is the curvature of the curve projected onto the surface's tangent plane; and the geodesic torsion (or relative torsion), τ r, measures the rate of change of the surface ...

  4. Frenet–Serret formulas - Wikipedia

    en.wikipedia.org/wiki/Frenet–Serret_formulas

    The first Frenet-Serret formula holds by the definition of the normal N and the curvature κ, and the third Frenet-Serret formula holds by the definition of the torsion τ. Thus what is needed is to show the second Frenet-Serret formula. Since T, N, B are orthogonal unit vectors with B = T × N, one also has T = N × B and N = B × T.

  5. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    Note that this transformation formula is for the mean curvature vector, and the formula for the mean curvature in the hypersurface case is ~ = ( , ) where ...

  6. Torsion of a curve - Wikipedia

    en.wikipedia.org/wiki/Torsion_of_a_curve

    A plane curve with non-vanishing curvature has zero torsion at all points. Conversely, if the torsion of a regular curve with non-vanishing curvature is identically zero, then this curve belongs to a fixed plane. The curvature and the torsion of a helix are constant. Conversely, any space curve whose curvature and torsion are both constant and ...

  7. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    The first four modes of a vibrating freefree Euler-Bernoulli beam. A freefree beam is a beam without any supports. [ 6 ] The boundary conditions for a freefree beam of length L {\displaystyle L} extending from x = 0 {\displaystyle x=0} to x = L {\displaystyle x=L} are given by:

  8. Intrinsic equation - Wikipedia

    en.wikipedia.org/wiki/Intrinsic_equation

    The Cesàro equation is obtained as a relation between arc length and curvature. The equation of a circle (including a line) for example is given by the equation κ ( s ) = 1 r {\displaystyle \kappa (s)={\tfrac {1}{r}}} where s {\displaystyle s} is the arc length, κ {\displaystyle \kappa } the curvature and r {\displaystyle r} the radius of ...

  9. Differentiable curve - Wikipedia

    en.wikipedia.org/wiki/Differentiable_curve

    In other words, if γ 1 (t) and γ 2 (t) are two curves in such that for any t, the two principal normals N 1 (t), N 2 (t) are equal, then γ 1 and γ 2 are Bertrand curves, and γ 2 is called the Bertrand mate of γ 1. We can write γ 2 (t) = γ 1 (t) + r N 1 (t) for some constant r. [1]