Search results
Results From The WOW.Com Content Network
An important class of functions when considering limits are continuous functions. These are precisely those functions which preserve limits , in the sense that if f {\displaystyle f} is a continuous function, then whenever a n → a {\displaystyle a_{n}\rightarrow a} in the domain of f {\displaystyle f} , then the limit f ( a n ) {\displaystyle ...
Investigations was developed between 1990 and 1998. It was just one of a number of reform mathematics curricula initially funded by a National Science Foundation grant. The goals of the project raised opposition to the curriculum from critics (both parents and mathematics teachers) who objected to the emphasis on conceptual learning instead of instruction in more recognized specific methods ...
Precalculus prepares students for calculus somewhat differently from the way that pre-algebra prepares students for algebra. While pre-algebra often has extensive coverage of basic algebraic concepts, precalculus courses might see only small amounts of calculus concepts, if at all, and often involves covering algebraic topics that might not have been given attention in earlier algebra courses.
A critical point of a function of a single real variable, f (x), is a value x 0 in the domain of f where f is not differentiable or its derivative is 0 (i.e. ′ =). [2] A critical value is the image under f of a critical point.
In mathematics, the Euclidean distance between two points in Euclidean space is the length of the line segment between them. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem , and therefore is occasionally called the Pythagorean distance .
There is a later (2017) second printing. Though usually there is little difference between the first and subsequent printings, in this case the second printing not only deletes from page 53 the Exercises 36, 40, 41, and 42 of Chapter 2 but also offers a (slightly, but still substantially) different presentation of part (ii) of Exercise 17.8.
Springer Series in Computational Mathematics. Vol. 8 (2nd ed.). Springer-Verlag, Berlin. ISBN 3-540-56670-8. MR 1227985. Ernst Hairer and Gerhard Wanner, Solving ordinary differential equations II: Stiff and differential-algebraic problems, second edition, Springer Verlag, Berlin, 1996. ISBN 3-540-60452-9.
A golden triangle. The ratio a/b is the golden ratio φ. The vertex angle is =.Base angles are 72° each. Golden gnomon, having side lengths 1, 1, and .. A golden triangle, also called a sublime triangle, [1] is an isosceles triangle in which the duplicated side is in the golden ratio to the base side: