Search results
Results From The WOW.Com Content Network
In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent.
Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula may be rewritten as e iπ + 1 = 0 or e iπ = −1, which is known as Euler's identity.
Euler is regarded as arguably the most prolific contributor in the history of mathematics and science, and the greatest mathematician of the 18th century. [12] [11] His 866 publications and his correspondence are being collected in the Opera Omnia Leonhard Euler which, when completed, will consist of 81 quartos.
Graph Theory, 1736–1936 is a book in the history of mathematics on graph theory.It focuses on the foundational documents of the field, beginning with the 1736 paper of Leonhard Euler on the Seven Bridges of Königsberg and ending with the first textbook on the subject, published in 1936 by Dénes KÅ‘nig.
Leonhard Euler is credited of introducing both specifications in two publications written in 1755 [3] and 1759. [4] [5] Joseph-Louis Lagrange studied the equations of motion in connection to the principle of least action in 1760, later in a treaty of fluid mechanics in 1781, [6] and thirdly in his book Mécanique analytique. [5]
Map of Königsberg in Euler's time showing the actual layout of the seven bridges, highlighting the river Pregel and the bridges. The Seven Bridges of Königsberg is a historically notable problem in mathematics. Its negative resolution by Leonhard Euler, in 1736, [1] laid the foundations of graph theory and prefigured the idea of topology. [2]
Usually, Euler's equation refers to one of (or a set of) differential equations (DEs). It is customary to classify them into ODEs and PDEs. Otherwise, Euler's equation may refer to a non-differential equation, as in these three cases: Euler–Lotka equation, a characteristic equation employed in mathematical demography; Euler's pump and turbine ...
Introductio in analysin infinitorum (Latin: [1] Introduction to the Analysis of the Infinite) is a two-volume work by Leonhard Euler which lays the foundations of mathematical analysis. Written in Latin and published in 1748, the Introductio contains 18 chapters in the first part and 22 chapters in the second.