Search results
Results From The WOW.Com Content Network
Restricted canonical transformations are coordinate transformations where transformed coordinates Q and P do not have explicit time dependence, i.e., = (,) and = (,).The functional form of Hamilton's equations is ˙ =, ˙ = In general, a transformation (q, p) → (Q, P) does not preserve the form of Hamilton's equations but in the absence of time dependence in transformation, some ...
In Hamiltonian mechanics, the linear canonical transformation (LCT) is a family of integral transforms that generalizes many classical transforms. It has 4 parameters and 1 constraint, so it is a 3-dimensional family, and can be visualized as the action of the special linear group SL 2 (C) on the time–frequency plane (domain).
Common examples are the partition function of statistical mechanics, the Hamiltonian, and the function which acts as a bridge between two sets of canonical variables when performing a canonical transformation.
Note: solving for ′ returns the resultant angle in the first quadrant (< <). To find , one must refer to the original Cartesian coordinate, determine the quadrant in which lies (for example, (3,−3) [Cartesian] lies in QIV), then use the following to solve for :
Canonical coordinates are defined as a special set of coordinates on the cotangent bundle of a manifold.They are usually written as a set of (,) or (,) with the x ' s or q ' s denoting the coordinates on the underlying manifold and the p ' s denoting the conjugate momentum, which are 1-forms in the cotangent bundle at point q in the manifold.
Thus, the time evolution of a function on a symplectic manifold can be given as a one-parameter family of symplectomorphisms (i.e., canonical transformations, area-preserving diffeomorphisms), with the time being the parameter: Hamiltonian motion is a canonical transformation generated by the Hamiltonian.
The Bogoliubov transformation is the canonical transformation mapping the operators ^ and ^ † to ^ and ^ †. To find the conditions on the constants u and v such that the transformation is canonical, the commutator is evaluated, namely,
The concept of Lagrange brackets can be expanded to that of matrices by defining the Lagrange matrix. Consider the following canonical transformation: = [] = [] Defining := (,) (,), the Lagrange matrix is defined as () =, where is the symplectic matrix under the same conventions used to order the set of coordinates.