Search results
Results From The WOW.Com Content Network
On the other hand, a randomly sampled complex tensor of the same size will be a rank-1 tensor with probability zero, a rank-2 tensor with probability one, and a rank-3 tensor with probability zero. It is even known that the generic rank-3 real tensor in R 2 ⊗ R 2 ⊗ R 2 {\displaystyle \mathbb {R} ^{2}\otimes \mathbb {R} ^{2}\otimes \mathbb ...
The tensors are classified according to their type (n, m), where n is the number of contravariant indices, m is the number of covariant indices, and n + m gives the total order of the tensor. For example, a bilinear form is the same thing as a (0, 2)-tensor; an inner product is an example of a (0, 2)-tensor, but not all (0, 2)-tensors are inner ...
A tensor whose components in an orthonormal basis are given by the Levi-Civita symbol (a tensor of covariant rank n) is sometimes called a permutation tensor. Under the ordinary transformation rules for tensors the Levi-Civita symbol is unchanged under pure rotations, consistent with that it is (by definition) the same in all coordinate systems ...
The rank of a tensor of order 2 agrees with the rank when the tensor is regarded as a matrix, [3] and can be determined from Gaussian elimination for instance. The rank of an order 3 or higher tensor is however often very difficult to determine, and low rank decompositions of tensors are sometimes of great practical interest. [4]
If a tensor changes sign under exchange of each pair of its indices, then the tensor is completely (or totally) antisymmetric. A completely antisymmetric covariant tensor field of order k {\displaystyle k} may be referred to as a differential k {\displaystyle k} -form , and a completely antisymmetric contravariant tensor field may be referred ...
Hooke's law has a symmetric fourth-order stiffness tensor with 81 components (3×3×3×3), but because the application of such a rank-4 tensor to a symmetric rank-2 tensor must yield another symmetric rank-2 tensor, not all of the 81 elements are independent. Voigt notation enables such a rank-4 tensor to be represented by a 6×6 matrix ...
The derivatives of scalars, vectors, and second-order tensors with respect to second-order tensors are of considerable use in continuum mechanics.These derivatives are used in the theories of nonlinear elasticity and plasticity, particularly in the design of algorithms for numerical simulations.
In multilinear algebra, the higher-order singular value decomposition (HOSVD) of a tensor is a specific orthogonal Tucker decomposition.It may be regarded as one type of generalization of the matrix singular value decomposition.