Search results
Results From The WOW.Com Content Network
1. Means "greater than or equal to". That is, whatever A and B are, A ≥ B is equivalent to A > B or A = B. 2. Between two groups, may mean that the second one is a subgroup of the first one. 1. Means "much less than" and "much greater than".
In mathematical writing, the greater-than sign is typically placed between two values being compared and signifies that the first number is greater than the second number. Examples of typical usage include 1.5 > 1 and 1 > −2. The less-than sign and greater-than sign always "point" to the smaller number.
An n-bit LUT can encode any n-input Boolean function by storing the truth table of the function in the LUT. This is an efficient way of encoding Boolean logic functions, and LUTs with 4-6 bits of input are in fact the key component of modern field-programmable gate arrays (FPGAs) which provide reconfigurable hardware logic capabilities.
Functions. If f is an n-ary function symbol, and t 1, ..., t n are terms, then f(t 1,...,t n) is a term. In particular, symbols denoting individual constants are nullary function symbols, and thus are terms. Only expressions which can be obtained by finitely many applications of rules 1 and 2 are terms.
The definitions can be generalized to functions and even to sets of functions. Given a function f with domain D and a preordered set (K, ≤) as codomain, an element y of K is an upper bound of f if y ≥ f (x) for each x in D. The upper bound is called sharp if equality holds for at least one value of x. It indicates that the constraint is ...
An alternative formula for ! using the gamma function is ! =. (as can be seen by repeated integration by parts). Rewriting and changing variables x = ny , one obtains n ! = ∫ 0 ∞ e n ln x − x d x = e n ln n n ∫ 0 ∞ e n ( ln y − y ) d y . {\displaystyle n!=\int _{0}^{\infty }e^{n\ln x-x}\,{\rm {d}}x=e^{n\ln n}n\int _{0 ...
The relation not greater than can also be represented by , the symbol for "greater than" bisected by a slash, "not". The same is true for not less than , a ≮ b . {\displaystyle a\nless b.} The notation a ≠ b means that a is not equal to b ; this inequation sometimes is considered a form of strict inequality. [ 4 ]
The supremum (abbreviated sup; pl.: suprema) of a subset of a partially ordered set is the least element in that is greater than or equal to each element of , if such an element exists. [1] If the supremum of S {\displaystyle S} exists, it is unique, and if b is an upper bound of S {\displaystyle S} , then the supremum of S {\displaystyle S} is ...