Search results
Results From The WOW.Com Content Network
In calculus, symbolic integration is the problem of finding a formula for the antiderivative, or indefinite integral, of a given function f(x), i.e. to find a formula for a differentiable function F(x) such that
In symbolic computation, the Risch algorithm is a method of indefinite integration used in some computer algebra systems to find antiderivatives. It is named after the American mathematician Robert Henry Risch, a specialist in computer algebra who developed it in 1968. The algorithm transforms the problem of integration into a problem in algebra.
The following tables provide a comparison of computer algebra systems (CAS). [1] [2] [3] A CAS is a package comprising a set of algorithms for performing symbolic manipulations on algebraic objects, a language to implement them, and an environment in which to use the language.
The symbol dx, called the differential of the variable x, indicates that the variable of integration is x. The function f ( x ) is called the integrand , the points a and b are called the limits (or bounds) of integration, and the integral is said to be over the interval [ a , b ] , called the interval of integration. [ 18 ]
In calculus, the constant of integration, often denoted by (or ), is a constant term added to an antiderivative of a function () to indicate that the indefinite integral of () (i.e., the set of all antiderivatives of ()), on a connected domain, is only defined up to an additive constant.
Symbolic integration of the algebraic function f(x) = x / √ x 4 + 10x 2 − 96x − 71 using the computer algebra system Axiom. In mathematics and computer science, [1] computer algebra, also called symbolic computation or algebraic computation, is a scientific area that refers to the study and development of algorithms and software for manipulating mathematical expressions and other ...
Symbolic integration via e.g. Risch algorithm or Risch–Norman algorithm; Hypergeometric summation via e.g. Gosper's algorithm; Limit computation via e.g. Gruntz's algorithm; Polynomial factorization via e.g., over finite fields, [21] Berlekamp's algorithm or Cantor–Zassenhaus algorithm. Greatest common divisor via e.g. Euclidean algorithm
SymbolicC++ is described in a series of books on computer algebra.The first book [5] described the first version of SymbolicC++. In this version the main data type for symbolic computation was the Sum class.