Search results
Results From The WOW.Com Content Network
From the complete oxidation of one glucose molecule to carbon dioxide and oxidation of all the reduced coenzymes. Although there is a theoretical yield of 38 ATP molecules per glucose during cellular respiration, such conditions are generally not realized because of losses such as the cost of moving pyruvate (from glycolysis), phosphate, and ...
Taken together, import of ADP and Pi and export of the resulting ATP results in one proton imported, subtracting from the number available for use by the ATP synthase directly. Taking this into account, it takes 8/3 +1 or 3.67 protons for vertebrate mitochondria to synthesize one ATP in the cytoplasm from ADP and Pi in the cytoplasm.
The flow of electrons through the electron transport chain is an exergonic process. The energy from the redox reactions creates an electrochemical proton gradient that drives the synthesis of adenosine triphosphate (ATP). In aerobic respiration, the flow of electrons terminates with molecular oxygen as the final electron
When an oxidizer (Ox) accepts a number z of electrons ( e −) to be converted in its reduced form (Red), the half-reaction is expressed as: Ox + z e − → Red. The reaction quotient (Q r) is the ratio of the chemical activity (a i) of the reduced form (the reductant, a Red) to the activity of the oxidized form (the oxidant, a ox).
Though slower than glucose, its yield is much higher. One molecule of glucose produces through aerobic glycolysis a net of 30-32 ATP; [11] whereas a fatty acid can produce through beta oxidation a net of approximately 100 ATP depending on the type of fatty acid. For example, palmitic acid can produce a net of 106 ATP.
d -Glucose + 2 [NAD] + + 2 [ADP] + 2 [P] i 2 × Pyruvate 2 × + 2 [NADH] + 2 H + + 2 [ATP] + 2 H 2 O Glycolysis pathway overview The use of symbols in this equation makes it appear unbalanced with respect to oxygen atoms, hydrogen atoms, and charges. Atom balance is maintained by the two phosphate (P i) groups: Each exists in the form of a hydrogen phosphate anion, dissociating to contribute ...
Glucose reacts with oxygen in the following reaction, C 6 H 12 O 6 + 6O 2 → 6CO 2 + 6H 2 O. Carbon dioxide and water are waste products, and the overall reaction is exothermic. The reaction of glucose with oxygen releasing energy in the form of molecules of ATP is therefore one of the most important biochemical pathways found in living organisms.
Herbivores and carnivores are examples of organisms that obtain carbon and electrons or hydrogen from living organic matter. Chemoorganotrophs are organisms which use the chemical energy in organic compounds as their energy source and obtain electrons or hydrogen from the organic compounds, including sugars (i.e. glucose), fats and proteins. [2]