Search results
Results From The WOW.Com Content Network
The cell cycle checkpoints play an important role in the control system by sensing defects that occur during essential processes such as DNA replication or chromosome segregation, and inducing a cell cycle arrest in response until the defects are repaired. [8]
The cell cycle is a series of complex, ordered, sequential events that control how a single cell divides into two cells, and involves several different phases. The phases include the G1 and G2 phases, DNA replication or S phase, and the actual process of cell division, mitosis or M phase. [ 1 ]
Many transcription factors, especially some that are proto-oncogenes or tumor suppressors, help regulate the cell cycle and as such determine how large a cell will get and when it can divide into two daughter cells. [32] [33] One example is the Myc oncogene, which has important roles in cell growth and apoptosis. [34]
Many cell cycle regulators like Cdks, cyclins, and p53 have been found to have abnormal expression in cancer. More specifically, they have been implicated in being involved in the G2/M transition by localizing to the centrosome, which thus leads to studies in manipulating such proteins in order to improve cancer's sensitivity to radiation and ...
Extrinsic regulation is made by signals from the niche, where stem cells are found, which is able to promote quiescent state and cell cycle activation in somatic stem cells. [63] Asymmetric division is characteristic of somatic stem cells, maintaining the reservoir of stem cells in the tissue and production of specialized cells of the same.
BCGFs specifically mediate the growth and division of B cells, or, in other words, the progression of B cells through their life cycle (cell cycle stages G1, S, G2). BCDFs control the advancement of a B cell progenitor or unmatured B cell to an adult immunoglobulin (Ig) secreting cell. Differentiation factors control cell fate and can sometimes ...
The eukaryotic cell cycle consists of four distinct phases: G 1 phase, S phase (synthesis), G 2 phase (collectively known as interphase) and M phase (mitosis and cytokinesis). M phase is itself composed of two tightly coupled processes: mitosis, in which the cell's nucleus divides, and cytokinesis, in which the cell's cytoplasm and cell membrane divides forming two daughter cells.
The unfolded protein response (UPR) is a cellular stress response related to the endoplasmic reticulum (ER) stress. [1] It has been found to be conserved between mammalian species, [2] as well as yeast [1] [3] and worm organisms. The UPR is activated in response to an accumulation of unfolded or misfolded proteins in the lumen of the