Search results
Results From The WOW.Com Content Network
The great circle g (green) lies in a plane through the sphere's center O (black). The perpendicular line a (purple) through the center is called the axis of g, and its two intersections with the sphere, P and P ' (red), are the poles of g. Any great circle s (blue) through the poles is secondary to g. A great circle divides the sphere in two ...
The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path between the two points on the surface of the sphere. (By comparison, the shortest path passing through the sphere's interior is the chord between ...
A great circle separates the sphere into two equal hemispheres, each with the great circle as its boundary. If a great circle passes through a point on the sphere, it also passes through the antipodal point (the unique furthest other point on the sphere). For any pair of distinct non-antipodal points, a unique great circle passes through both.
On the sphere, geodesics are great circles. Spherical trigonometry is of great importance for calculations in astronomy, geodesy, and navigation. The origins of spherical trigonometry in Greek mathematics and the major developments in Islamic mathematics are discussed fully in History of trigonometry and Mathematics in medieval Islam.
However, two great circles on a plane intersect in two antipodal points, unlike coplanar lines in Elliptic geometry. In the extrinsic 3-dimensional picture, a great circle is the intersection of the sphere with any plane through the center. In the intrinsic approach, a great circle is a geodesic; a shortest path between any two of its points ...
The 31 great circles can be seen as the union of edges in 3 polyhedra. The lower right image shows 15 red circles, 10 green circles, and 6 blue circles. In geometry, the 31 great circles of the spherical icosahedron is an arrangement of 31 great circles in icosahedral symmetry. [1]
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes.Important in navigation, it is a special case of a more general formula in spherical trigonometry, the law of haversines, that relates the sides and angles of spherical triangles.
Great circles transform to straight lines via the gnomonic projection. Since meridians (lines of longitude) and the equator are great circles, they are always shown as straight lines on a gnomonic map. Since the projection is from the centre of the sphere, a gnomonic map can represent less than half of the area of the sphere.