When.com Web Search

  1. Ad

    related to: how to calculate relative vorticity coefficient of water flow

Search results

  1. Results From The WOW.Com Content Network
  2. Vorticity equation - Wikipedia

    en.wikipedia.org/wiki/Vorticity_equation

    The term (ω ∙ ∇) u on the right-hand side describes the stretching or tilting of vorticity due to the flow velocity gradients. Note that (ω ∙ ∇) u is a vector quantity, as ω ∙ ∇ is a scalar differential operator, while ∇u is a nine-element tensor quantity. The term ω(∇ ∙ u) describes stretching of vorticity due to flow ...

  3. Vorticity - Wikipedia

    en.wikipedia.org/wiki/Vorticity

    The relative vorticity is the vorticity relative to the Earth induced by the air velocity field. This air velocity field is often modeled as a two-dimensional flow parallel to the ground, so that the relative vorticity vector is generally scalar rotation quantity perpendicular to the ground.

  4. Drag coefficient - Wikipedia

    en.wikipedia.org/wiki/Drag_coefficient

    Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.

  5. Flow coefficient - Wikipedia

    en.wikipedia.org/wiki/Flow_coefficient

    The flow coefficient of a device is a relative measure of its efficiency at allowing fluid flow. It describes the relationship between the pressure drop across an orifice valve or other assembly and the corresponding flow rate. Mathematically the flow coefficient C v (or flow-capacity rating of valve) can be expressed as

  6. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    The proportionality coefficient is the dimensionless "Darcy friction factor" or "flow coefficient". This dimensionless coefficient will be a combination of geometric factors such as π, the Reynolds number and (outside the laminar regime) the relative roughness of the pipe (the ratio of the roughness height to the hydraulic diameter).

  7. Flow velocity - Wikipedia

    en.wikipedia.org/wiki/Flow_velocity

    In many engineering applications the local flow velocity vector field is not known in every point and the only accessible velocity is the bulk velocity or average flow velocity ¯ (with the usual dimension of length per time), defined as the quotient between the volume flow rate ˙ (with dimension of cubed length per time) and the cross sectional area (with dimension of square length):

  8. Vortex sheet - Wikipedia

    en.wikipedia.org/wiki/Vortex_sheet

    While the tangential components of the flow velocity are discontinuous across the vortex sheet, the normal component of the flow velocity is continuous. The discontinuity in the tangential velocity means the flow has infinite vorticity on a vortex sheet. At high Reynolds numbers, vortex sheets tend to be unstable.

  9. Dynamic similarity (Reynolds and Womersley numbers)

    en.wikipedia.org/wiki/Dynamic_similarity...

    The Reynolds and Womersley Numbers are also used to calculate the thicknesses of the boundary layers that can form from the fluid flow’s viscous effects. The Reynolds number is used to calculate the convective inertial boundary layer thickness that can form, and the Womersley number is used to calculate the transient inertial boundary thickness that can form.