Search results
Results From The WOW.Com Content Network
That is (unlike road distance with one-way streets) the distance between two points does not depend on which of the two points is the start and which is the destination. [12] It is positive, meaning that the distance between every two distinct points is a positive number, while the distance from any point to itself is zero. [12]
Geographical distance or geodetic distance is the distance measured along the surface of the Earth, or the shortest arch length. The formulae in this article calculate distances between points which are defined by geographical coordinates in terms of latitude and longitude. This distance is an element in solving the second (inverse) geodetic ...
The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.
On computer systems with low floating point precision, the spherical law of cosines formula can have large rounding errors if the distance is small (if the two points are a kilometer apart on the surface of the Earth, the cosine of the central angle is near 0.99999999).
Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes.Important in navigation, it is a special case of a more general formula in spherical trigonometry, the law of haversines, that relates the sides and angles of spherical triangles.
the distance between the two lines is the distance between the two intersection points of these lines with the perpendicular line y = − x / m . {\displaystyle y=-x/m\,.} This distance can be found by first solving the linear systems
The Hausdorff distance is the longest distance someone can be forced to travel by an adversary who chooses a point in one of the two sets, from where they then must travel to the other set. In other words, it is the greatest of all the distances from a point in one set to the closest point in the other set.