When.com Web Search

  1. Ads

    related to: nasa isentropic relations pdf file free online converter

Search results

  1. Results From The WOW.Com Content Network
  2. Isentropic nozzle flow - Wikipedia

    en.wikipedia.org/wiki/Isentropic_Nozzle_Flow

    The isentropic stagnation state is the state a flowing fluid would attain if it underwent a reversible adiabatic deceleration to zero velocity. There are both actual and the isentropic stagnation states for a typical gas or vapor. Sometimes it is advantageous to make a distinction between the actual and the isentropic stagnation states.

  3. Isentropic process - Wikipedia

    en.wikipedia.org/wiki/Isentropic_process

    In fluid dynamics, an isentropic flow is a fluid flow that is both adiabatic and reversible. That is, no heat is added to the flow, and no energy transformations occur due to friction or dissipative effects. For an isentropic flow of a perfect gas, several relations can be derived to define the pressure, density and temperature along a streamline.

  4. Isentropic analysis - Wikipedia

    en.wikipedia.org/wiki/Isentropic_analysis

    Isentropic analysis of the 300 kelvin isotrope and the weather satellite image of clouds during a blizzard in Colorado. In meteorology, isentropic analysis is a technique used to find the vertical and horizontal motion of airmasses during an adiabatic (i.e. non-heat-exchanging) process above the planetary boundary layer.

  5. File:Bischoff and Rosenbauer, 1988 - Liquid-vapor relations.pdf

    en.wikipedia.org/wiki/File:Bischoff_and_Rosen...

    English: Bischoff, James L., & Rosenbauer, Robert J. (1988). Liquid-vapor relations in the critical region of the system NaCl-H2O from 380 to 415°C: A refined determination of the critical point and two-phase boundary of seawater.

  6. Fanno flow - Wikipedia

    en.wikipedia.org/wiki/Fanno_flow

    Point 3 labels the transition from isentropic to Fanno flow. Points 4 and 5 give the pre- and post-shock wave conditions, and point E is the exit from the duct. Figure 4 The H-S diagram is depicted for the conditions of Figure 3. Entropy is constant for isentropic flow, so the conditions at point 1 move down vertically to point 3.

  7. Prandtl–Meyer function - Wikipedia

    en.wikipedia.org/wiki/Prandtl–Meyer_function

    For isentropic compression, ν ( M 2 ) = ν ( M 1 ) − θ {\displaystyle \nu (M_{2})=\nu (M_{1})-\theta \,} where, θ {\displaystyle \theta } is the absolute value of the angle through which the flow turns, M {\displaystyle M} is the flow Mach number and the suffixes "1" and "2" denote the initial and final conditions respectively.