When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Isentropic analysis - Wikipedia

    en.wikipedia.org/wiki/Isentropic_analysis

    Isentropic analysis of the 300 kelvin isotrope and the weather satellite image of clouds during a blizzard in Colorado. In meteorology, isentropic analysis is a technique used to find the vertical and horizontal motion of airmasses during an adiabatic (i.e. non-heat-exchanging) process above the planetary boundary layer.

  3. Normal shock tables - Wikipedia

    en.wikipedia.org/wiki/Normal_shock_tables

    In aerodynamics, the normal shock tables are a series of tabulated data listing the various properties before and after the occurrence of a normal shock wave. [1] With a given upstream Mach number, the post-shock Mach number can be calculated along with the pressure, density, temperature, and stagnation pressure ratios.

  4. Prandtl–Meyer function - Wikipedia

    en.wikipedia.org/wiki/Prandtl–Meyer_function

    For isentropic compression, ν ( M 2 ) = ν ( M 1 ) − θ {\displaystyle \nu (M_{2})=\nu (M_{1})-\theta \,} where, θ {\displaystyle \theta } is the absolute value of the angle through which the flow turns, M {\displaystyle M} is the flow Mach number and the suffixes "1" and "2" denote the initial and final conditions respectively.

  5. Isentropic process - Wikipedia

    en.wikipedia.org/wiki/Isentropic_process

    In fluid dynamics, an isentropic flow is a fluid flow that is both adiabatic and reversible. That is, no heat is added to the flow, and no energy transformations occur due to friction or dissipative effects. For an isentropic flow of a perfect gas, several relations can be derived to define the pressure, density and temperature along a streamline.

  6. Isentropic nozzle flow - Wikipedia

    en.wikipedia.org/wiki/Isentropic_Nozzle_Flow

    The isentropic stagnation state is the state a flowing fluid would attain if it underwent a reversible adiabatic deceleration to zero velocity. There are both actual and the isentropic stagnation states for a typical gas or vapor. Sometimes it is advantageous to make a distinction between the actual and the isentropic stagnation states.

  7. Fanno flow - Wikipedia

    en.wikipedia.org/wiki/Fanno_flow

    Point 3 labels the transition from isentropic to Fanno flow. Points 4 and 5 give the pre- and post-shock wave conditions, and point E is the exit from the duct. Figure 4 The H-S diagram is depicted for the conditions of Figure 3. Entropy is constant for isentropic flow, so the conditions at point 1 move down vertically to point 3.

  8. Thermodynamic relations across normal shocks - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_relations...

    "Normal shocks" are a fundamental type of shock wave.The waves, which are perpendicular to the flow, are called "normal" shocks. Normal shocks only happen when the flow is supersonic.

  9. Temperature–entropy diagram - Wikipedia

    en.wikipedia.org/wiki/Temperature–entropy_diagram

    Q H = W + Q C = heat exchanged with the hot reservoir. η = W / (Q C + Q H) = thermal efficiency of the cycle If the cycle moves in a clockwise sense, then it is a heat engine that outputs work; if the cycle moves in a counterclockwise sense, it is a heat pump that takes in work and moves heat Q H from the cold reservoir to the hot reservoir.