Search results
Results From The WOW.Com Content Network
In ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring [1] ... is a prime ideal. A number of ...
(The zero ring has no prime ideals, because the ideal (0) is the whole ring.) An ideal I is prime if and only if its set-theoretic complement is multiplicatively closed. [3] Every nonzero ring contains at least one prime ideal (in fact it contains at least one maximal ideal), which is a direct consequence of Krull's theorem.
However, in other rings, the ideals may not correspond directly to the ring elements, and certain properties of integers, when generalized to rings, attach more naturally to the ideals than to the elements of the ring. For instance, the prime ideals of a ring are analogous to prime numbers, and the Chinese remainder theorem can be generalized ...
In a commutative ring with unity, every maximal ideal is a prime ideal. The converse is not always true: for example, in any nonfield integral domain the zero ideal is a prime ideal which is not maximal. Commutative rings in which prime ideals are maximal are known as zero-dimensional rings, where the dimension used is the Krull dimension.
Consider the ring of integers.. The radical of the ideal of integer multiples of is (the evens).; The radical of is .; The radical of is .; In general, the radical of is , where is the product of all distinct prime factors of , the largest square-free factor of (see Radical of an integer).
A presentable ring is one that is a quotient of a regular ring. prime 1. A prime ideal is a proper ideal whose complement is closed under multiplication. 2. A prime element of a ring is an element that generates a prime ideal. 3. A prime local ring is a localization of the integers at a prime ideal. 4.
A right primitive ideal is defined similarly. Left and right primitive ideals are always two-sided ideals. Primitive ideals are prime. The quotient of a ring by a left primitive ideal is a left primitive ring. For commutative rings the primitive ideals are maximal, and so commutative primitive rings are all fields.
R is a Jacobson ring; Every prime ideal of R is an intersection of maximal ideals. Every radical ideal is an intersection of maximal ideals. Every Goldman ideal is maximal. Every quotient ring of R by a prime ideal has a zero Jacobson radical. In every quotient ring, the nilradical is equal to the Jacobson radical.