Ad
related to: electromagnetic spectral series of different frequency lines in physics
Search results
Results From The WOW.Com Content Network
The spectral lines are grouped into series according to n′. Lines are named sequentially starting from the longest wavelength/lowest frequency of the series, using Greek letters within each series. For example, the 2 → 1 line is called "Lyman-alpha" (Ly-α), while the 7 → 3 line is called "Paschen-delta" (Pa-δ).
The phrase "spectral lines", when not qualified, usually refers to lines having wavelengths in the visible band of the full electromagnetic spectrum. Many spectral lines occur at wavelengths outside this range. At shorter wavelengths, which correspond to higher energies, ultraviolet spectral lines include the Lyman series of hydrogen.
In the physical sciences, the spectrum of a physical quantity (such as energy) may be called continuous if it is non-zero over the whole spectrum domain (such as frequency or wavelength) or discrete if it attains non-zero values only in a discrete set over the independent variable, with band gaps between pairs of spectral bands or spectral lines.
The electromagnetic spectrum is the full range of electromagnetic radiation, organized by frequency or wavelength. The spectrum is divided into separate bands, with different names for the electromagnetic waves within each band. From low to high frequency these are: radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and ...
The spectrum appears in a series of lines called the line spectrum. This line spectrum is called an atomic spectrum when it originates from an atom in elemental form. Each element has a different atomic spectrum. The production of line spectra by the atoms of an element indicate that an atom can radiate only a certain amount of energy.
The electromagnetic radiation producing this line has a frequency of 1 420.405 751 768 (2) MHz (1.42 GHz), [1] which is equivalent to a wavelength of 21.106 114 054 160 (30) cm in a vacuum. According to the Planck–Einstein relation E = hν, the photon emitted by this transition has an energy of 5.874 326 184 1116 (81) μeV [9.411 708 152 678 ...
Lines five and six can be seen with the naked eye, but are considered to be ultraviolet as they have wavelengths less than 400 nm. The Balmer series, or Balmer lines in atomic physics, is one of a set of six named series describing the spectral line emissions of the hydrogen atom. The Balmer series is calculated using the Balmer formula, an ...
Spectral line shape or spectral line profile describes the form of an electromagnetic spectrum in the vicinity of a spectral line – a region of stronger or weaker intensity in the spectrum. Ideal line shapes include Lorentzian , Gaussian and Voigt functions, whose parameters are the line position, maximum height and half-width. [ 1 ]