Search results
Results From The WOW.Com Content Network
The spectral lines are grouped into series according to n′. Lines are named sequentially starting from the longest wavelength/lowest frequency of the series, using Greek letters within each series. For example, the 2 → 1 line is called "Lyman-alpha" (Ly-α), while the 7 → 3 line is called "Paschen-delta" (Pa-δ).
The electromagnetic spectrum is the full range of electromagnetic radiation, organized by frequency or wavelength. The spectrum is divided into separate bands, with different names for the electromagnetic waves within each band. From low to high frequency these are: radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and ...
The phrase "spectral lines", when not qualified, usually refers to lines having wavelengths in the visible band of the full electromagnetic spectrum. Many spectral lines occur at wavelengths outside this range. At shorter wavelengths, which correspond to higher energies, ultraviolet spectral lines include the Lyman series of hydrogen.
A spectroscope or a spectrometer is an instrument which is used for separating the components of light, which have different wavelengths. The spectrum appears in a series of lines called the line spectrum. This line spectrum is called an atomic spectrum when it originates from an atom in elemental form. Each element has a different atomic spectrum.
The electromagnetic radiation producing this line has a frequency of 1 420.405 751 768 (2) MHz (1.42 GHz), [1] which is equivalent to a wavelength of 21.106 114 054 160 (30) cm in a vacuum. According to the Planck–Einstein relation E = hν, the photon emitted by this transition has an energy of 5.874 326 184 1116 (81) μeV [9.411 708 152 678 ...
Lines five and six can be seen with the naked eye, but are considered to be ultraviolet as they have wavelengths less than 400 nm. The Balmer series, or Balmer lines in atomic physics, is one of a set of six named series describing the spectral line emissions of the hydrogen atom. The Balmer series is calculated using the Balmer formula, an ...
Many systems are characterized by the spectral band to which they respond. For example: Musical instruments produce different ranges of notes within the hearing range.; The electromagnetic spectrum can be divided into many different ranges such as visible light, infrared or ultraviolet radiation, radio waves, X-rays and so on, and each of these ranges can in turn be divided into smaller ranges.
The sharp series limit is the same as the diffuse series limit. In the late 1800s these two were termed supplementary series. In 1896 Arthur Schuster stated his law: "If we subtract the frequency of the fundamental vibration from the convergence frequency of the principal series, we obtain the convergence frequency of the supplementary series". [5]