Search results
Results From The WOW.Com Content Network
With the new operations, the implementation of weight-balanced trees can be more efficient and highly-parallelizable. [10] [11] Join: The function Join is on two weight-balanced trees t 1 and t 2 and a key k and will return a tree containing all elements in t 1, t 2 as well as k. It requires k to be greater than all keys in t 1 and smaller than ...
Depth only increases when the root is split, maintaining balance. Similarly, a B-tree is kept balanced after deletion by merging or redistributing keys among siblings to maintain the -key minimum for non-root nodes. A merger reduces the number of keys in the parent potentially forcing it to merge or redistribute keys with its siblings, and so on.
A tree whose root node has two subtrees, both of which are full binary trees. A perfect binary tree is a binary tree in which all interior nodes have two children and all leaves have the same depth or same level (the level of a node defined as the number of edges or links from the root node to a node). [18] A perfect binary tree is a full ...
Fig. 1: AVL tree with balance factors (green) In computer science, an AVL tree (named after inventors Adelson-Velsky and Landis) is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property.
For height-balanced binary trees, the height is defined to be logarithmic () in the number of items. This is the case for many binary search trees, such as AVL trees and red–black trees . Splay trees and treaps are self-balancing but not height-balanced, as their height is not guaranteed to be logarithmic in the number of items.
An example of a m-ary tree with m=5. In graph theory, an m-ary tree (for nonnegative integers m) (also known as n-ary, k-ary or k-way tree) is an arborescence (or, for some authors, an ordered tree) [1] [2] in which each node has no more than m children.
In computer science, an optimal binary search tree (Optimal BST), sometimes called a weight-balanced binary tree, [1] is a binary search tree which provides the smallest possible search time (or expected search time) for a given sequence of accesses (or access probabilities). Optimal BSTs are generally divided into two types: static and dynamic.
Removing a point from a balanced k-d tree takes O(log n) time. Querying an axis-parallel range in a balanced k-d tree takes O(n 1−1/k +m) time, where m is the number of the reported points, and k the dimension of the k-d tree. Finding 1 nearest neighbour in a balanced k-d tree with randomly distributed points takes O(log n) time on average.