Search results
Results From The WOW.Com Content Network
A CMOS transistor NAND element. V dd denotes positive voltage.. In CMOS logic, if both of the A and B inputs are high, then both the NMOS transistors (bottom half of the diagram) will conduct, neither of the PMOS transistors (top half) will conduct, and a conductive path will be established between the output and Vss (ground), bringing the output low.
Because it has only one input, it is a unary operation and has the simplest type of truth table. It is also called the complement gate [2] because it produces the ones' complement of a binary number, swapping 0s and 1s. The NOT gate is one of three basic logic gates from which any Boolean circuit may be built up.
The 3-input Fredkin gate is functionally complete reversible gate by itself – a sole sufficient operator. There are many other three-input universal logic gates, such as the Toffoli gate . In quantum computing , the Hadamard gate and the T gate are universal, albeit with a slightly more restrictive definition than that of functional completeness.
The NAND gate has the property of functional completeness, which it shares with the NOR gate. That is, any other logic function (AND, OR, etc.) can be implemented using only NAND gates. [2] An entire processor can be created using NAND gates alone. In TTL ICs using multiple-emitter transistors, it also requires fewer transistors than a NOR gate.
The transformation is easy to describe if the circuit is wholly constructed out of 2-input NAND gates (a functionally-complete set of Boolean operators): assign every net in the circuit a variable, then for each NAND gate, construct the conjunctive normal form clauses (v 1 ∨ v 3) ∧ (v 2 ∨ v 3) ∧ (¬v 1 ∨ ¬v 2 ∨ ¬v 3), where v 1 ...
An XNOR gate can be implemented using a NAND gate and an OR-AND-Invert gate, as shown in the following picture. [3] This is based on the identity ¯ (¯) ¯ An alternative, which is useful when inverted inputs are also available (for example from a flip-flop), uses a 2-2 AND-OR-Invert gate, shown on below on the right.
OR-AND-invert gates or OAI-gates are logic gates comprising OR gates followed by a NAND gate. They can be efficiently implemented in logic families like CMOS and TTL . They are dual to AND-OR-invert gates.
The ∧ nodes are AND gates, the ∨ nodes are OR gates, and the ¬ nodes are NOT gates. In computational complexity theory and circuit complexity, a Boolean circuit is a mathematical model for combinational digital logic circuits. A formal language can be decided by a family of Boolean circuits, one circuit for each possible input length.