Ads
related to: pn junction diode simulation
Search results
Results From The WOW.Com Content Network
The Shockley diode equation relates the diode current of a p-n junction diode to the diode voltage .This relationship is the diode I-V characteristic: = (), where is the saturation current or scale current of the diode (the magnitude of the current that flows for negative in excess of a few , typically 10 −12 A).
A p–n diode is a type of semiconductor diode based upon the p–n junction. The diode conducts current in only one direction, and it is made by joining a p-type semiconducting layer to an n-type semiconducting layer. Semiconductor diodes have multiple uses including rectification of alternating current to direct current, in the detection of ...
p–n junctions represent the simplest case of a semiconductor electronic device; a p-n junction by itself, when connected on both sides to a circuit, is a diode. More complex circuit components can be created by further combinations of p-type and n-type semiconductors; for example, the bipolar junction transistor (BJT) is a semiconductor in ...
A PN junction in forward bias mode, the depletion width decreases. Both p and n junctions are doped at a 1e15/cm3 doping level, leading to built-in potential of ~0.59V. Observe the different Quasi Fermi levels for conduction band and valence band in n and p regions (red curves). A depletion region forms instantaneously across a p–n junction.
Shockley derives an equation for the voltage across a p-n junction in a long article published in 1949. [2] Later he gives a corresponding equation for current as a function of voltage under additional assumptions, which is the equation we call the Shockley ideal diode equation. [3]
A well known application of this method is the approximation of the transfer function of a pn junction diode. The transfer function of an ideal diode has been given at the top of this (non-linear) section. However, this formula is rarely used in network analysis, a piecewise approximation being used instead.
Carrier generation and recombination processes are fundamental to the operation of many optoelectronic semiconductor devices, such as photodiodes, light-emitting diodes and laser diodes. They are also critical to a full analysis of p-n junction devices such as bipolar junction transistors and p-n junction diodes .
Band diagram for p–n junction at equilibrium. The depletion region is shaded. φ B denotes band shift for holes and charges level. See P–n diode. The inner workings of a light emitting diode, showing circuit (top) and band diagram when a bias voltage is applied (bottom).