Search results
Results From The WOW.Com Content Network
The golden-section search is a technique for finding an extremum (minimum or maximum) of a function inside a specified interval. For a strictly unimodal function with an extremum inside the interval, it will find that extremum, while for an interval containing multiple extrema (possibly including the interval boundaries), it will converge to one of them.
The golden ratio φ and its negative reciprocal −φ −1 are the two roots of the quadratic polynomial x 2 − x − 1. The golden ratio's negative −φ and reciprocal φ −1 are the two roots of the quadratic polynomial x 2 + x − 1. The golden ratio is also an algebraic number and even an algebraic integer.
For example, claims have been made about golden ratio proportions in Egyptian, Sumerian and Greek vases, Chinese pottery, Olmec sculptures, and Cretan and Mycenaean products from the late Bronze Age. These predate by some 1,000 years the Greek mathematicians first known to have studied the golden ratio.
A golden triangle. The ratio a/b is the golden ratio φ. The vertex angle is =.Base angles are 72° each. Golden gnomon, having side lengths 1, 1, and .. A golden triangle, also called a sublime triangle, [1] is an isosceles triangle in which the duplicated side is in the golden ratio to the base side:
Golden spirals are self-similar. The shape is infinitely repeated when magnified. In geometry, a golden spiral is a logarithmic spiral whose growth factor is φ, the golden ratio. [1] That is, a golden spiral gets wider (or further from its origin) by a factor of φ for every quarter turn it makes.
Pages in category "Golden ratio" The following 26 pages are in this category, out of 26 total. This list may not reflect recent changes. ...
In geometry, a golden rectangle is a rectangle with side lengths in golden ratio +:, or :, with approximately equal to 1.618 or 89/55. Golden rectangles exhibit a special form of self-similarity : if a square is added to the long side, or removed from the short side, the result is a golden rectangle as well.
The ratio of the progression of side lengths is , where = (+) / is the golden ratio, and the progression can be written: ::, or approximately 1 : 1.272 : 1.618. Squares on the edges of this triangle have areas in another geometric progression, 1 : φ : φ 2 {\displaystyle 1:\varphi :\varphi ^{2}} .