Search results
Results From The WOW.Com Content Network
The Bell numbers themselves, on the left and right sides of the triangle, count the number of ways of partitioning a finite set into subsets, or equivalently the number of equivalence relations on the set. Sun & Wu (2011) provide the following combinatorial interpretation of each value in the triangle.
A k –elements combination from some set is another name for a k –elements subset, so the number of combinations, denoted as C(n, k) (also called binomial coefficient) is a number of subsets with k elements in a set with n elements; in other words it's the number of sets with k elements which are elements of the power set of a set with n ...
where is the set of square numbers. A subject that has received a fair amount of study is that of sets with small doubling , where the size of the set A + A {\displaystyle A+A} is small (compared to the size of A {\displaystyle A} ); see for example Freiman's theorem .
The Stirling number {} is the number of ways to partition a set of cardinality n into exactly k nonempty subsets. Thus, in the equation relating the Bell numbers to the Stirling numbers, each partition counted on the left hand side of the equation is counted in exactly one of the terms of the sum on the right hand side, the one for which k is ...
To investigate the left distributivity of set subtraction over unions or intersections, consider how the sets involved in (both of) De Morgan's laws are all related: () = = () always holds (the equalities on the left and right are De Morgan's laws) but equality is not guaranteed in general (that is, the containment might be strict).
The set {x: x is a prime number greater than 10} is a proper subset of {x: x is an odd number greater than 10} The set of natural numbers is a proper subset of the set of rational numbers; likewise, the set of points in a line segment is a proper subset of the set of points in a line.
In set theory and related branches of mathematics, a family (or collection) can mean, depending upon the context, any of the following: set, indexed set, multiset, or class. A collection of subsets of a given set is called a family of subsets of , or a family of sets over .
The most naïve algorithm would be to cycle through all subsets of n numbers and, for every one of them, check if the subset sums to the right number. The running time is of order O ( 2 n ⋅ n ) {\displaystyle O(2^{n}\cdot n)} , since there are 2 n {\displaystyle 2^{n}} subsets and, to check each subset, we need to sum at most n elements.