Search results
Results From The WOW.Com Content Network
The Bell numbers themselves, on the left and right sides of the triangle, count the number of ways of partitioning a finite set into subsets, or equivalently the number of equivalence relations on the set. Sun & Wu (2011) provide the following combinatorial interpretation of each value in the triangle.
where is the set of square numbers. A subject that has received a fair amount of study is that of sets with small doubling , where the size of the set A + A {\displaystyle A+A} is small (compared to the size of A {\displaystyle A} ); see for example Freiman's theorem .
By the induction hypothesis, the number of ways to do that is 2 n. If a subset does not contain the distinguished element, then it is a subset of the set of all non-distinguished elements. By the induction hypothesis, the number of such subsets is 2 n. Finally, the whole list of subsets of our size-(n + 1) set contains 2 n + 2 n = 2 n+1 elements.
The Stirling number {} is the number of ways to partition a set of cardinality n into exactly k nonempty subsets. Thus, in the equation relating the Bell numbers to the Stirling numbers, each partition counted on the left hand side of the equation is counted in exactly one of the terms of the sum on the right hand side, the one for which k is ...
A k –elements combination from some set is another name for a k –elements subset, so the number of combinations, denoted as C(n, k) (also called binomial coefficient) is a number of subsets with k elements in a set with n elements; in other words it's the number of sets with k elements which are elements of the power set of a set with n ...
To investigate the left distributivity of set subtraction over unions or intersections, consider how the sets involved in (both of) De Morgan's laws are all related: () = = () always holds (the equalities on the left and right are De Morgan's laws) but equality is not guaranteed in general (that is, the containment might be strict).
In mathematics, a set A is a subset of a set B if all elements of A are also elements of B; B is then a superset of A. It is possible for A and B to be equal; if they are unequal, then A is a proper subset of B. The relationship of one set being a subset of another is called inclusion (or sometimes containment).
The two-element subset {3, 5} is a generating set, since (−5) + 3 + 3 = 1 (in fact, any pair of coprime numbers is, as a consequence of Bézout's identity). The dihedral group of an n-gon (which has order 2n) is generated by the set {r, s}, where r represents rotation by 2π/n and s is any reflection across a line of symmetry. [1]