Search results
Results From The WOW.Com Content Network
Zaker (2006) defines a sequence of graphs called t-atoms, with the property that a graph has Grundy number at least t if and only if it contains a t-atom.Each t-atom is formed from an independent set and a (t − 1)-atom, by adding one edge from each vertex of the (t − 1)-atom to a vertex of the independent set, in such a way that each member of the independent set has at least one edge ...
At the end of a long day, taking inventory of the fridge, cracking a cookbook open, or running out to the grocery store in order to figure out a dinner plan can seem overwhelming.
A vertex can reach a vertex (and is reachable from ) if there exists a sequence of adjacent vertices (i.e. a walk) which starts with and ends with . In an undirected graph, reachability between all pairs of vertices can be determined by identifying the connected components of the graph.
Throughout, it is assumed that is a real or complex vector space.. For any ,,, say that lies between [2] and if and there exists a < < such that = + ().. If is a subset of and , then is called an extreme point [2] of if it does not lie between any two distinct points of .
An example of a maximum cut. In a graph, a maximum cut is a cut whose size is at least the size of any other cut. That is, it is a partition of the graph's vertices into two complementary sets S and T, such that the number of edges between S and T is as large as possible.
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
A cutpoint, cut vertex, or articulation point of a graph G is a vertex that is shared by two or more blocks. The structure of the blocks and cutpoints of a connected graph can be described by a tree called the block-cut tree or BC-tree. This tree has a vertex for each block and for each articulation point of the given graph.
A directed walk is a finite or infinite sequence of edges directed in the same direction which joins a sequence of vertices. [2]Let G = (V, E, ϕ) be a directed graph. A finite directed walk is a sequence of edges (e 1, e 2, …, e n − 1) for which there is a sequence of vertices (v 1, v 2, …, v n) such that ϕ(e i) = (v i, v i + 1) for i = 1, 2, …, n − 1.