When.com Web Search

  1. Ad

    related to: gaussian mixture vs k means that one

Search results

  1. Results From The WOW.Com Content Network
  2. Mixture model - Wikipedia

    en.wikipedia.org/wiki/Mixture_model

    A typical finite-dimensional mixture model is a hierarchical model consisting of the following components: . N random variables that are observed, each distributed according to a mixture of K components, with the components belonging to the same parametric family of distributions (e.g., all normal, all Zipfian, etc.) but with different parameters

  3. Expectation–maximization algorithm - Wikipedia

    en.wikipedia.org/wiki/Expectation–maximization...

    Using the variances, the EM algorithm can describe the normal distributions exactly, while k-means splits the data in Voronoi-cells. The cluster center is indicated by the lighter, bigger symbol. An animation demonstrating the EM algorithm fitting a two component Gaussian mixture model to the Old Faithful dataset. The algorithm steps through ...

  4. EM algorithm and GMM model - Wikipedia

    en.wikipedia.org/wiki/EM_Algorithm_And_GMM_Model

    The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.

  5. Mixture distribution - Wikipedia

    en.wikipedia.org/wiki/Mixture_distribution

    This type of mixture, being a finite sum, is called a finite mixture, and in applications, an unqualified reference to a "mixture density" usually means a finite mixture. The case of a countably infinite set of components is covered formally by allowing n = ∞ {\displaystyle n=\infty \!} .

  6. Multivariate normal distribution - Wikipedia

    en.wikipedia.org/wiki/Multivariate_normal...

    Under the null hypothesis of multivariate normality, the statistic A will have approximately a chi-squared distribution with ⁠ 1 / 6 ⁠ ⋅k(k + 1)(k + 2) degrees of freedom, and B will be approximately standard normal N(0,1). Mardia's kurtosis statistic is skewed and converges very slowly to the limiting normal distribution.

  7. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    If a Gaussian mixture is fitted to such data, a strongly non-Gaussian cluster will often be represented by several mixture components rather than a single one. In that case, cluster merging can be used to find a better clustering. [20] A different approach is to use mixtures of complex component densities to represent non-Gaussian clusters. [21 ...

  8. Variational Bayesian methods - Wikipedia

    en.wikipedia.org/wiki/Variational_Bayesian_methods

    Bayesian Gaussian mixture model using plate notation. Smaller squares indicate fixed parameters; larger circles indicate random variables. Filled-in shapes indicate known values. The indication [K] means a vector of size K; [D,D] means a matrix of size D×D; K alone means a categorical variable with K outcomes.

  9. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    [60]: 354, 11.4.2.5 This does not mean that it is efficient to use Gaussian mixture modelling to compute k-means, but just that there is a theoretical relationship, and that Gaussian mixture modelling can be interpreted as a generalization of k-means; on the contrary, it has been suggested to use k-means clustering to find starting points for ...