Search results
Results From The WOW.Com Content Network
Each logic operator can be used in an assertion about variables and operations, showing a basic rule of inference. Examples: The column-14 operator (OR), shows Addition rule: when p=T (the hypothesis selects the first two lines of the table), we see (at column-14) that p∨q=T.
This is the modus ponens rule of propositional logic. Rules of inference are often formulated as schemata employing metavariables. [2] In the rule (schema) above, the metavariables A and B can be instantiated to any element of the universe (or sometimes, by convention, a restricted subset such as propositions) to form an infinite set of ...
In first-order logic, resolution condenses the traditional syllogisms of logical inference down to a single rule. To understand how resolution works, consider the following example syllogism of term logic: All Greeks are Europeans. Homer is a Greek. Therefore, Homer is a European. Or, more generally: .
De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.
In propositional logic, material implication [1] [2] is a valid rule of replacement that allows a conditional statement to be replaced by a disjunction in which the antecedent is negated. The rule states that P implies Q is logically equivalent to not-or and that either form can replace the other in logical proofs.
The full generalization rule allows for hypotheses to the left of the turnstile, but with restrictions.Assume is a set of formulas, a formula, and () has been derived. The generalization rule states that () can be derived if is not mentioned in and does not occur in .
Pages in category "Rules of inference" The following 43 pages are in this category, out of 43 total. ... Absorption (logic) Admissible rule; Antidistributive;
Constructive dilemma [1] [2] [3] is a valid rule of inference of propositional logic. It is the inference that, if P implies Q and R implies S and either P or R is true, then either Q or S has to be true. In sum, if two conditionals are true and at least one of their antecedents is, then at least one of their consequents must be too.