When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dykstra's projection algorithm - Wikipedia

    en.wikipedia.org/wiki/Dykstra's_projection_algorithm

    Dykstra's algorithm is a method that computes a point in the intersection of convex sets, and is a variant of the alternating projection method (also called the projections onto convex sets method). In its simplest form, the method finds a point in the intersection of two convex sets by iteratively projecting onto each of the convex set; it ...

  3. Line–line intersection - Wikipedia

    en.wikipedia.org/wiki/Line–line_intersection

    The intersection point above is for the infinitely long lines defined by the points, rather than the line segments between the points, and can produce an intersection point not contained in either of the two line segments. In order to find the position of the intersection in respect to the line segments, we can define lines L 1 and L 2 in terms ...

  4. Projections onto convex sets - Wikipedia

    en.wikipedia.org/wiki/Projections_onto_convex_sets

    In mathematics, projections onto convex sets (POCS), sometimes known as the alternating projection method, is a method to find a point in the intersection of two closed convex sets. It is a very simple algorithm and has been rediscovered many times. [1] The simplest case, when the sets are affine spaces, was analyzed by John von Neumann.

  5. Bentley–Ottmann algorithm - Wikipedia

    en.wikipedia.org/wiki/Bentley–Ottmann_algorithm

    Find the segments r and t that (prior to the removal of s) were respectively immediately above and below it in T (if they exist). If r and t cross, add that crossing point as a potential future event in the event queue. If p is the crossing point of two segments s and t (with s below t to the left of the crossing), swap the positions of s and t ...

  6. Convex hull algorithms - Wikipedia

    en.wikipedia.org/wiki/Convex_hull_algorithms

    As stated above, the complexity of finding a convex hull as a function of the input size n is lower bounded by Ω(n log n). However, the complexity of some convex hull algorithms can be characterized in terms of both input size n and the output size h (the number of points in the hull). Such algorithms are called output-sensitive algorithms.

  7. Möller–Trumbore intersection algorithm - Wikipedia

    en.wikipedia.org/wiki/Möller–Trumbore...

    The Möller–Trumbore ray-triangle intersection algorithm, named after its inventors Tomas Möller and Ben Trumbore, is a fast method for calculating the intersection of a ray and a triangle in three dimensions without needing precomputation of the plane equation of the plane containing the triangle. [1]

  8. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    The following is an example of a possible implementation of Newton's method in the Python (version 3.x) programming language for finding a root of a function f which has derivative f_prime. The initial guess will be x 0 = 1 and the function will be f ( x ) = x 2 − 2 so that f ′ ( x ) = 2 x .

  9. Distance from a point to a line - Wikipedia

    en.wikipedia.org/wiki/Distance_from_a_point_to_a...

    Let (m, n) be the point of intersection of the line ax + by + c = 0 and the line perpendicular to it which passes through the point (x 0, y 0). The line through these two points is perpendicular to the original line, so =.