Search results
Results From The WOW.Com Content Network
A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety of geometries. A periodic tiling has a repeating pattern.
Like squares and equilateral triangles, regular hexagons fit together without any gaps to tile the plane (three hexagons meeting at every vertex), and so are useful for constructing tessellations. The cells of a beehive honeycomb are hexagonal for this reason and because the shape makes efficient use of space and building materials.
The original form of Penrose tiling used tiles of four different shapes, but this was later reduced to only two shapes: either two different rhombi, or two different quadrilaterals called kites and darts. The Penrose tilings are obtained by constraining the ways in which these shapes are allowed to fit together in a way that avoids periodic tiling.
The 12 pentominoes can form 18 different shapes, with 6 of them (the chiral pentominoes) being mirrored. A pentomino (or 5-omino) is a polyomino of order 5; that is, a polygon in the plane made of 5 equal-sized squares connected edge to edge.
We’ve gathered some amusing and oddly satisfying examples of things that perfectly fit into other things. If that sounds like After all, so many folks want buttons and knobs returned to cars and ...
The most efficient way to pack different-sized circles together is not obvious. In geometry, circle packing is the study of the arrangement of circles (of equal or varying sizes) on a given surface such that no overlapping occurs and so that no circle can be enlarged without creating an overlap.
Such a shape is called an einstein, a word play on ein Stein, German for "one stone". [ 2 ] Several variants of the problem, depending on the particular definitions of nonperiodicity and the specifications of what sets may qualify as tiles and what types of matching rules are permitted, were solved beginning in the 1990s.
The regular pentagon cannot form Cairo tilings, as it does not tile the plane without gaps. There is a unique equilateral pentagon that can form a type 4 Cairo tiling; it has five equal sides but its angles are unequal, and its tiling is bilaterally symmetric. [4] [13] Infinitely many other equilateral pentagons can form type 2 Cairo tilings. [4]