When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of aperiodic sets of tiles - Wikipedia

    en.wikipedia.org/wiki/List_of_aperiodic_sets_of...

    In geometry, a tiling is a partition of the plane (or any other geometric setting) into closed sets (called tiles), without gaps or overlaps (other than the boundaries of the tiles). [1] A tiling is considered periodic if there exist translations in two independent directions which map the tiling onto itself.

  3. Tessellation - Wikipedia

    en.wikipedia.org/wiki/Tessellation

    If a geometric shape can be used as a prototile to create a tessellation, the shape is said to tessellate or to tile the plane. The Conway criterion is a sufficient, but not necessary, set of rules for deciding whether a given shape tiles the plane periodically without reflections: some tiles fail the criterion, but still tile the plane. [19]

  4. Penrose tiling - Wikipedia

    en.wikipedia.org/wiki/Penrose_tiling

    The original form of Penrose tiling used tiles of four different shapes, but this was later reduced to only two shapes: either two different rhombi, or two different quadrilaterals called kites and darts. The Penrose tilings are obtained by constraining the ways in which these shapes are allowed to fit together in a way that avoids periodic tiling.

  5. Euclidean tilings by convex regular polygons - Wikipedia

    en.wikipedia.org/wiki/Euclidean_tilings_by...

    There are 673 6-uniform tilings of the Euclidean plane. Brian Galebach's search reproduced Krotenheerdt's list of 10 6-uniform tilings with 6 distinct vertex types, as well as finding 92 of them with 5 vertex types, 187 of them with 4 vertex types, 284 of them with 3 vertex types, and 100 with 2 vertex types.

  6. Hexagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Hexagonal_tiling

    Hexagonal tiling is the densest way to arrange circles in two dimensions. The honeycomb conjecture states that hexagonal tiling is the best way to divide a surface into regions of equal area with the least total perimeter.

  7. Hexagon - Wikipedia

    en.wikipedia.org/wiki/Hexagon

    Like squares and equilateral triangles, regular hexagons fit together without any gaps to tile the plane (three hexagons meeting at every vertex), and so are useful for constructing tessellations. The cells of a beehive honeycomb are hexagonal for this reason and because the shape makes efficient use of space and building materials.

  8. 50 Times Random Things Just Fit Perfectly Together And It Was ...

    www.aol.com/100-times-random-things-just...

    We’ve gathered some amusing and oddly satisfying examples of things that perfectly fit into other things. If that sounds like After all, so many folks want buttons and knobs returned to cars and ...

  9. Pentomino - Wikipedia

    en.wikipedia.org/wiki/Pentomino

    The 12 pentominoes can form 18 different shapes, with 6 of them (the chiral pentominoes) being mirrored. A pentomino (or 5-omino) is a polyomino of order 5; that is, a polygon in the plane made of 5 equal-sized squares connected edge to edge.