When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Axiomatic system - Wikipedia

    en.wikipedia.org/wiki/Axiomatic_system

    In mathematics and logic, an axiomatic system is any set of primitive notions and axioms to logically derive theorems. A theory is a consistent, relatively-self-contained body of knowledge which usually contains an axiomatic system and all its derived theorems. An axiomatic system that is completely described is a special kind of formal system.

  3. List of axioms - Wikipedia

    en.wikipedia.org/wiki/List_of_axioms

    This is a list of axioms as that term is understood in mathematics. In epistemology, the word axiom is understood differently; see axiom and self-evidence. Individual axioms are almost always part of a larger axiomatic system.

  4. Zermelo–Fraenkel set theory - Wikipedia

    en.wikipedia.org/wiki/Zermelo–Fraenkel_set_theory

    Some of "mainstream mathematics" (mathematics not directly connected with axiomatic set theory) is beyond Peano arithmetic and second-order arithmetic, but still, all such mathematics can be carried out in ZC (Zermelo set theory with choice), another theory weaker than ZFC. Much of the power of ZFC, including the axiom of regularity and the ...

  5. List of axiomatic systems in logic - Wikipedia

    en.wikipedia.org/wiki/List_of_axiomatic_systems...

    Every logic system requires at least one non-nullary rule of inference. Classical propositional calculus typically uses the rule of modus ponens: ,. We assume this rule is included in all systems below unless stated otherwise. Frege's axiom system: [1] ()

  6. Axiom - Wikipedia

    en.wikipedia.org/wiki/Axiom

    An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word ἀξίωμα (axíōma), meaning 'that which is thought worthy or fit' or 'that which commends itself as evident'.

  7. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    Based on ancient Greek methods, an axiomatic system is a formal description of a way to establish the mathematical truth that flows from a fixed set of assumptions. Although applicable to any area of mathematics, geometry is the branch of elementary mathematics in which this method has most extensively been successfully applied.

  8. Gödel's incompleteness theorems - Wikipedia

    en.wikipedia.org/wiki/Gödel's_incompleteness...

    Gödel's incompleteness theorems are two theorems of mathematical logic that are concerned with the limits of provability in formal axiomatic theories. These results, published by Kurt Gödel in 1931, are important both in mathematical logic and in the philosophy of mathematics.

  9. List of mathematical logic topics - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_logic...

    Element (mathematics) Ur-element; Singleton (mathematics) Simple theorems in the algebra of sets; Algebra of sets; Power set; Empty set; Non-empty set; Empty function; Universe (mathematics) Axiomatization; Axiomatic system. Axiom schema; Axiomatic method; Formal system; Mathematical proof. Direct proof; Reductio ad absurdum; Proof by ...