When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Difference quotient - Wikipedia

    en.wikipedia.org/wiki/Difference_quotient

    Difference quotients may also find relevance in applications involving Time discretization, where the width of the time step is used for the value of h. The difference quotient is sometimes also called the Newton quotient [10] [12] [13] [14] (after Isaac Newton) or Fermat's difference quotient (after Pierre de Fermat). [15]

  3. Chain rule - Wikipedia

    en.wikipedia.org/wiki/Chain_rule

    The latter is the difference quotient for g at a, and because g is differentiable at a by assumption, its limit as x tends to a exists and equals g′(a). As for Q(g(x)), notice that Q is defined wherever f is. Furthermore, f is differentiable at g(a) by assumption, so Q is continuous at g(a), by definition of the derivative.

  4. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The difference rule: ... Quotient rule. If and are functions, then: ′ = ′ ′, wherever is nonzero. This can be derived from the product rule and the reciprocal ...

  5. Inverse function rule - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_rule

    Integrating this relationship gives = ′ (()) +.This is only useful if the integral exists. In particular we need ′ to be non-zero across the range of integration. It follows that a function that has a continuous derivative has an inverse in a neighbourhood of every point where the derivative is non-zero.

  6. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    This expression is Newton's difference quotient (also known as a first-order divided difference). The slope of this secant line differs from the slope of the tangent line by an amount that is approximately proportional to h. As h approaches zero, the slope of the secant line approaches the slope of the tangent line.

  7. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + ⁠ h / 2 ⁠) and f ′(x − ⁠ h / 2 ⁠) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f:

  8. Symmetric derivative - Wikipedia

    en.wikipedia.org/wiki/Symmetric_derivative

    The expression under the limit is sometimes called the symmetric difference quotient. [3] [4] A function is said to be symmetrically differentiable at a point x if its symmetric derivative exists at that point. If a function is differentiable (in the usual sense) at a point, then it is also symmetrically differentiable, but the converse is not ...

  9. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    In principle, the derivative of a function can be computed from the definition by considering the difference quotient and computing its limit. Once the derivatives of a few simple functions are known, the derivatives of other functions are more easily computed using rules for obtaining derivatives of more complicated functions from simpler ones.