Ad
related to: how to prove one function is linear or exponential equation that shows the following
Search results
Results From The WOW.Com Content Network
In mathematics, the exponential function can be characterized in many ways. This article presents some common characterizations, discusses why each makes sense, and proves that they are all equivalent. The exponential function occurs naturally in many branches of mathematics. Walter Rudin called it "the most important function in mathematics". [1]
However, Razborov and Rudich showed that if one-way functions exist, P and NP are indistinguishable to natural proof methods. Although the existence of one-way functions is unproven, most mathematicians believe that they do, and a proof of their existence would be a much stronger statement than P ≠ NP.
With exponential functions, increasing the input by one unit causes the output to increase by a fixed multiple, which is known as the base of the exponential function. If both arguments and values of a function are in the logarithmic scale (i.e., when log(y) is a linear function of log(x)), then the straight line represents a power law:
Exponential functions occur very often in solutions of differential equations. The exponential functions can be defined as solutions of differential equations. Indeed, the exponential function is a solution of the simplest possible differential equation, namely ′ = .
The exponential shift theorem can be used to speed the calculation of higher derivatives of functions that is given by the product of an exponential and another function. For instance, if f ( x ) = sin ( x ) e x {\displaystyle f(x)=\sin(x)e^{x}} , one has that
Complex replacement is used for solving differential equations when the non-homogeneous term is expressed in terms of a sinusoidal function or an exponential function, which can be converted into a complex exponential function differentiation and integration. Such complex exponential function is easier to manipulate than the original function.
The Lambert W function is used to solve equations in which the unknown quantity occurs both in the base and in the exponent, or both inside and outside of a logarithm. The strategy is to convert such an equation into one of the form ze z = w and then to solve for z using the W function. For example, the equation = +
Fermat's Last Theorem states that no three positive integers (a, b, c) can satisfy the equation a n + b n = c n for any integer value of n greater than 2. (For n equal to 1, the equation is a linear equation and has a solution for every possible a and b. For n equal to 2, the equation has infinitely many solutions, the Pythagorean triples.)